• Title/Summary/Keyword: Continuous reactive power compensator

Search Result 7, Processing Time 0.025 seconds

A Hybrid Static Compensator for Dynamic Reactive Power Compensation and Harmonic Suppression

  • Yang, Jia-qiang;Yang, Lei;Su, Zi-peng
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.798-810
    • /
    • 2017
  • This paper presents a combined system of a small-capacity inverter and multigroup delta-connected thyristor switched capacitors (TSCs). The system is referred to as a hybrid static compensator (HSC) and has the functions of dynamic reactive power compensation and harmonic suppression. In the proposed topology, the load reactive power is mainly compensated by the TSCs. Meanwhile the inverter is meant to cooperate with TSCs to achieve continuous reactive power compensation, and to filter the harmonics generated by nonlinear loads and the TSCs. First, the structure and mathematical model of the HSC are discussed Then the control method of the HSC is presented. An improved reduced order generalized integrator (ROGI)-based selective current control method is adopted in the inverter to achieve high-performance reactive and harmonic current compensation. Meanwhile, a switch control strategy is proposed to implement precise and fast switching of the TSCs and to avoid changing the time delay needed by the conventional switch strategy. Experiments are implemented on a 20 KVA HSC prototype and the obtained results verify the validity of the proposed HSC system.

Series Line Compensation through Voltage Source Inverter (전압원 인버터에 의한 선로의 직렬보상)

  • 한병문;한경희;신익상;강중구
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.299-302
    • /
    • 1997
  • This paper describes a dynamic var compensator to compensate the line reactance for power transmission and distribution system. The compensator consists of a voltage source inverter with dc capacitor, coupling transformers, and control circuit. The operation of compensator was verified by computer simulations with EMPT and experimental works with a scaled hardware model. The advantage of the proposed system is rapid and continuous regulation of the reactive power.

  • PDF

Dynamic Performance Comparision of various Combination of reactive power compensators (조상설비 조합에 따른 정태적 특성 및 동태적 특성 비교)

  • Kang Sang Gyun;Jang Gil Soo;Lee Byong Jun;Kwon Sae Hyuk
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.224-226
    • /
    • 2004
  • Flexible AC Transmission System (FACTS) can greatly reinforce power systems through improvement of power transmission capacity and utilization of equipment under the circumstance of continuous load growth and deregulation SVC and STATCOM are shunt FACT devices that have similar static characteristics with Mwhuical Swikhed Capacitor (MSC). The main issue of this paper is the analysis of different dynamic characteristics when STATCOM is solely adopted and when STATCOM is adopted with combination of other reactive power compensator such as SVC and M5C. Furthermore, better application of reactive power compensators can be clarified through analysis of dynamic characteristics of various combinations of reactive power compensators.

  • PDF

A study on the Reactive Power Compensation using Instantaneous Power for Self Commutated Static Var Compensator (순시전력을 이용한 자려식 SVC의 무효전력보상에 관한 연구)

  • Eum, Sang-O;Kim, Jong-Yun;Jeon, Nae-Suck;Park, Chan-Kun;Lee, Sung-Geun;Kim, Yoon-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1206-1208
    • /
    • 2000
  • The Static var compensators(SVC) are intensively studied to realize high performance power equipment for electric power systems. Rapid and continuous reactive compensation by the SVC contributes to voltage stabilization, power oscillation damping, overvoltage suppression, minimization of transmission losses and so on. In this paper, instantaneous power vector theory which can expresses the instantaneous apparent power vector is proposed to control reactive power. The validity of the proposed method is confirmed by simulation studies.

  • PDF

A Magnetic Energy Recovery Switch Based Terminal Voltage Regulator for the Three-Phase Self-Excited Induction Generators in Renewable Energy Systems

  • Wei, Yewen;Kang, Longyun;Huang, Zhizhen;Li, Zhen;Cheng, Miao miao
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1305-1317
    • /
    • 2015
  • Distributed generation systems (DGSs) have been getting more and more attention in terms of renewable energy use and new generation technologies in the past decades. The self-excited induction generator (SEIG) occupies an important role in the area of energy conversion due to its low cost, robustness and simple control. Unlike synchronous generators, the SEIG has to absorb capacitive reactive power from the outer device aiming to stabilize the terminal voltage at load changes. This paper presents a novel static VAR compensator (SVC) called a magnetic energy recovery switch (MERS) to serve as a voltage controller in SEIG powered DGSs. In addition, many small scale SEIGs, instead of a single large one, are applied and devoted to promote the generation efficiency. To begin with, an expandable mathematic model based on a d-q equivalent circuit is created for parallel SEIGs. The control method of the MERS is further improved with the objective of broadening its operating range and restraining current harmonics by parameter optimization. A hybrid control strategy is developed by taking both of the stand-alone and grid-connected modes into consideration. Then simulation and experiments are carried out in the case of single and double SEIG(s) generation. Finally, the measurement results verify that the proposed DGS with SVC-MERS achieves a better stability and higher feasibility. The major advantages of the mentioned variable reactive power supplier, when compared to the STATCOM, include the adoption of a small DC capacitor, line frequency switching, simple control and less loss.

Operation Principle and Characteristics Simulation of STATCOM (무효전력보상장치(STATCOM)의 동작원리 및 특성 시뮬레이션)

  • Lee, Dong-Ju;Lee, Eun-Woong;Lee, Jong-Han;Kim, Jong-Gyeum
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.58-60
    • /
    • 2005
  • STATCOM whose performance is higher than SVC at a view point of a continuous controllability of reactive power and response time is reviewed in this paper. Also, basic principle of STATCOM operation and the functions of each component are explained. 30kVA STATCOM system is practically designed according to design procedure in reference [2, [7] to develop a cost-effective and compact compensator. Its operation characteristics are verified by the simulation.

  • PDF

Flicker Mitigation in a Wind Farm by Controlling a Permanent Magnet Synchronous Generator (영구자석형 동기발전기를 이용한 풍력단지의 플리커 저감)

  • Hoan, Pham Van;Kim, Dae-Hyun;Ahn, Jin-Hong;Kim, Eel-Hwan;Oh, Seong-Bo;Kim, Ho-Chan;Kim, Se-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1163-1168
    • /
    • 2009
  • The power quality of wind energy becomes more and more important in connecting wind-farms to the grid, especially weak grid. This paper presents the simulation of a wind farm of a permanent magnet synchronous generator (PMSG) and a doubly fed induction generator (DFIG). Flicker mitigation is performed by using PMSG as a static synchronous compensator (STATCOM) to regulate the voltage at the point of common coupling (PCC). A benefit of the measure is that integrating two function of to control the active power flow and to reduce the voltage flicker in a wind farm. Simulation results show that controlling PMSG is an effective and economic measure in reducing the flicker during continuous operation of grid connected wind turbines regardless of short circuit capacity ratio, turbulence intensity and grid impedance angle.