• Title/Summary/Keyword: Continuous performance test

Search Result 485, Processing Time 0.027 seconds

Proposed Development and Evaluation System for Existing Standardized Waterproof Technology Assessment Methods(Production technology, maintenance evaluation) (표준화된 방수기술 평가기법 개발 및 평가체계 구축 (생산기술, 유지관리 평가 중심))

  • Song, Je-Young;Seo, Hyun-Jae;Choi, Eun-Kyu;Lee, Jung-Hun;Kim, Byoungil;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.235-236
    • /
    • 2019
  • Waterproofing materials and construction methods have been developed and applied to various construction sites since the past. However, there many cases where the waterproofing performance is not satisfactory, leading to continuous water leakage. It has been observed that a key reason for this is because waterproofing method and material selection is not optimized in terms of the appropriate application area and environmental degradation factors. This paper proposes that future selection of waterproofing methods should consider the following evaluation criteria; 1) waterproof performance evaluation according to site conditions, 2) evaluation of construction method, 3) manufacturing and maintenance of waterproofing systems.

  • PDF

Two-fluid modelling for poly-disperse bubbly flows in vertical pipes: Analysis of the impact of geometrical parameters and heat transfer

  • Andrea Allio ;Antonio Buffo ;Daniele Marchisio;Laura Savoldi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1152-1166
    • /
    • 2023
  • The bubbly flow of air or steam in subcooled water are investigated here in several test cases, characterized by different pipe sizes, bubble dimensions and flow rates, by means of CFD using a Eulerian-Eulerian approach. The performance of models that differ for the turbulence closure in the continuous phase, as well as for the description of the lift force on the dispersed phase, are compared in detail. When air is considered, the space of the experimental parameters leading to a reasonable performance for the selected models are identified and discussed, while the issues left in the modelling of the concurrent condensation are highlighted for the cases where steam is used.

Performance Improvement Technology on a Continuous Heating Heat Pump at Frost Condition (착상조건에서 연속난방이 가능한 히트펌프 성능 향상 기술)

  • Jeon, Chang-Duk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.573-577
    • /
    • 2013
  • Heat pumps come into wide use because high energy efficiency can be obtained and diverse heat sources like geothermal heat, waste heat and air are available. It is necessary for an air source heat pump to defrost in order to remove frost on the surfaces of an outdoor heat exchanger. It is impossible for continuous heating if reverse cycle operation is used as defrosting method, furthermore it causes the degradation of COP. In this study an fin-tube heat exchanger with three rows was used as an outdoor coil. One row among three rows of the heat exchanger was used like a condenser in order to remove frost on it, the others were used as evaporator to accomplish continuous heating. Each row was switched in order from a condenser to an evaporator in specified time interval. Tests were carried out during minimum 180 minutes at the defrost-heating test condition(dry bulb temperature $2^{\circ}C$, wet bulb temperature $1^{\circ}C$) described in KS C 9306. Time-averaged COP was about 20% higher than that of conventional defrosting method.

Solid state electrochemical double layer capacitors with natural graphite and activated charcoal composite electrodes

  • Hansika, P.A.D.;Perera, K.S.;Vidanapathirana, K.P.;Zainudeen, U.L.
    • Advances in materials Research
    • /
    • v.8 no.1
    • /
    • pp.37-46
    • /
    • 2019
  • Electrochemical double layer capacitors (EDLCs) which are fabricated using carbon based electrodes have been emerging at an alarming rate to fulfill the energy demand in the present day world. Activated charcoal has been accepted as a very suitable candidate for electrodes but its cost is higher than natural graphite. Present study is about fabrication of EDLCs using composite electrodes with activated charcoal and Sri Lankan natural graphite as well as a gel polymer electrolyte which is identified as a suitable substitute for liquid electrolytes. Electrochemical Impedance Spectroscopy, Cyclic Voltammetry and Galvanostatic Charge Discharge test were done to evaluate the performance of the fabricated EDLCs. Amount of activated charcoal and natural graphite plays a noticeable role on the capacity. 50 graphite : 40 AC : 10 PVdF showed the optimum single electrode specific capacity value of 15 F/g. Capacity is determined by the cycling rate as well as the potential window within which cycling is being done. Continuous cycling resulted an average single electrode specific capacity variation of 48 F/g - 16 F/g. Capacity fading was higher at the beginning. Later, it dropped noticeably. Initial discharge capacity drop under Galvanostatic Charge Discharge test was slightly fast but reached near stable upon continuous charge discharge process. It can be concluded that initially some agitation is required to reach the maturity. However, the results can be considered as encouraging to initiate studies on EDLCs using Sri Lankan natural graphite.

Development of an FMCW Radar Altimeter Simulator Using Optical Delay Lines (광 지연선을 이용한 FMCW 전파고도계 시뮬레이터 개발)

  • Lee, Jae-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.208-216
    • /
    • 2017
  • This paper presents the design method of an FMCW(frequency-modulated continuous-wave) altitude simulator which generates propagation delay signals according to target distances to test the radar altimeter. To improve the conventional RF method for creating delay signals, the simulator is designed by the RF-optics-RF method using optical delay lines. In addition, it is designed to simulate the Doppler shift and jamming that may occur in actual flight environment. In order to evaluate the performance of the developed simulator, the integration tests have been conducted with the radar altimeter. Through the test, we successfully verified the performance of the simulator.

Speech Quality Measure in a Mobile Communication System Using PLP Cepstral Distance with CMS (심리 음향 켑스트럼 평균 차감법을 이용한 이동 전화망에서의 음질 평가)

  • Yun, J.J.;Park, S.W.;Park, Y.C.;Youn, D.H.;Cha, I.H.
    • Speech Sciences
    • /
    • v.6
    • /
    • pp.163-179
    • /
    • 1999
  • For the set up, management and repair of a mobile communication system, continuous estimation of speech quality is required. Speech quality measurement can be conducted by listener's judgement in a subjective test such as MOS (Mean Opinion Score) test. However, this method is laborious, expensive and time-consuming, it is advisable to predict subjective speech quality via objective measures. This paper presents a robust objective speech quality measure, PLP-CMS (Perceptual Linear Predictive-Cepstral Mean Subtraction), which can predict subjective speech quality in mobile communication systems. PLP-CMS has a high correlation with subjective quality owing to PLP (Perceptual Linear Predictive) analysis and shows a robust performance not being influenced by PSTN (Public Switched Telephone Network) channel effects due to CMS (Cepstral Mean Subtraction). To prove the performance of our proposed algorithm, we carried out subjective and objective quality estimation on speech samples which are variously distorted in a real mobile communication system. As a result, we demonstrated that PLP-CMS has a higher correlation with subjective quality than PSQM (Perceptual Speech Quality Measure) and PLP-CD (Perceptual Linear Predictive-Cepstral Distance).

  • PDF

Performance Evaluation of Porous Hwang-toh Concrete Using Blast Furnace Slag Cement (고로슬래그시멘트를 사용한 다공성 황토콘크리트의 성능 평가)

  • Kim, Hwang-Hee;Kang, Su-Man;Park, Jong-Sik;Park, Sang-Woo;Jeon, Ji-Hong;Lee, Jin-Hyung;Cha, Sang-Sun;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.9-17
    • /
    • 2010
  • This study aims to evaluate a porous concrete using hwang-toh, blast furnace slag and blast furnace slag (BFS) cement instead of type I cement. The tests that were carried out to analysis the properties of porous hwang-toh BFS cement concrete included compressive strength, continuous void ratio, absorption rate, and pH value, repeated freezing and thawing test were conducted. Test results indicated that the performance in porous hwang-toh concrete are effective on the kaoline based binder materials. The pH value were shown in about 9.5 ~ 8.5. The compressive strength was increased and void ratio was decreased with increasing the kaoline based binder materials, respectively. The void ratio and compressive strength were in the range of about 21 ~ 30 %, 8 ~ 13 MPa, respectively. The increased in void ratio of more than 25 % is showed to reduce the resistance of repeated freezing and thawing. Also, the resistance of repeated freezing of thawing and the compressive strength of porous hwang-toh BFS cement concrete are independent with hwang-toh content and BFS cement amount. But, the void ratio was decreased with increasing the high volume hwang-toh contents (more than 15 %).

Two-Phase Two-Component Loop Thermosyphon with Nanofluid (나노유체를 이용한 2상유동 2성분 루프형 열사이폰)

  • Rhi Seok-Ho;Park Jong-Chan;Cha Kyeong-Il;Lim Taek-Kyu;Lee Chung-Gu;Shin Dong-Ryun;Park Gi-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.384-392
    • /
    • 2006
  • Reported are the heat transfer characteristics of a two-phase loop thermosyphon (TLT) with nanofluids consisted of nano-size silver particles and distilled water as the working fluid. The nanofluids used in the present study are dispersed solutions with various amount of silver nanoparticle in distilled water. It is seen from the present study that the heat transfer performance of the test TLT with nanofluids increased as much as about 2 times higher than that of a TLT with pure water as the working fluid based on same heat flux. The study also showed that there was no deterioration of the TLT performance with time, up to a period of 8 days of continuous operation which implies that there was no coagulation of nanoparticles within the working nanofluid during the operation of the test TLT.

Effects of Design Parameters on Structural Performance of Precast Piers with Bonded Prestressing Steels (부착 긴장재를 가진 조립식 교각 설계변수의 구조성능에 미치는 영향)

  • Shim, Chang-Su;Yoon, Jae-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.15-26
    • /
    • 2010
  • Quasi-static tests were conducted to evaluate structural performance of precast piers prestressed by bonded prestressing steels. Combinations of prestressing bars and normal reinforcing bars, embedded steel tubes and prestressing strands were used as continuous steels crossing the joints of a precast pier. Main design parameters were steel ratio, magnitude of prestress force, and section details. Flexural strength and energy dissipation capacity of precast columns with higher steel ratio showed better performance due to continuous steels after opening of the joints. Precast piers with embedded members showed stable behavior after reaching maximum loads resulting in higher displacement ductility and energy dissipation capacity increased as the introduced prestress increased. Self-centering behavior at early stages and stress increase of confining reinforcements were observed from highly prestressed columns. Combination of prestressing steels and normal reinforcing bars should be used in design to prevent rapid strength degradation after reaching the maximum load.

A Study on the Performance of Recycled Cells for application to Residential BESS (주택용 BESS에 적용하기 위한 재활용 셀의 성능에 관한 연구)

  • Phil-Jung Kim;Seong-Soo Yang
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.14-19
    • /
    • 2024
  • To determine the performance of recycled cells for application to residential BESS, cells used over the past 5 years were selected. The basic specifications of the cell used in the test are nominal voltage of 3.7[V], nominal capacity of 2,200[mAh], charging voltage of 4.05[V], continuous discharge current of 1[C](2,200[mA]), continuous charging current of 0.5[C](1,100[mA]). For new cells, the internal resistance was 21.3±1[mΩ], but for recycled cells, the average internal resistance was 25.38[mΩ], an increase of about 19.1[%]. The charge·discharge capacity was approximately 18.9~19.3[%] lower than that of a new cell. Because internal resistance and charge·discharge capacity are closely related to cell aging, cells to be applied to BESS need to use products with an initial internal resistance of 1.5 times or less and a charge·discharge capacity performance of 70[%] or more.