• Title/Summary/Keyword: Continuous chip

Search Result 138, Processing Time 0.028 seconds

Passive UHF RFID Propagation Characteristics and Reconsideration of Link budget on Practical Communication Area (수동형 UHF RFID 인터페이스에 대한 Link budget의 재해석 및 전파 환경 요소 분석)

  • Jung, Jin-Woo;Park, Kyoung-Tae;Roh, Hyoung-Hwan;Park, Jun-Seok;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.469-472
    • /
    • 2008
  • In this paper, we discuss the recent trends on the passive UHF RFID tag chip design techniques and several important system parameters. We also summarize link budget studies on both conventional and modem UHF RFID communications. The paper highlights the reverse link limited case, which has known to be the minor concern if reader continuous wave (CW) can reach the tag in sufficient level. This makes sense when the tag sensitivity is rather high (over 10-12${\mu}W$); however, since the tag chip fabrication technologies have been developed by time, the tag chip threshold levels are now less-dominant in determining link margin. If the tag limitation can be alleviated, the forward link limited case can be resolved; thus, we rather focus on the path-loss problem. Since the path-losses are still exist in both forward and reverse links, and it can be doubled while CW travels the reader-tag-reader path because forward link and reverse link are on the same distance. Consider if reader receiver sensitivity is very high in the worst case. In this case, weaken tag response (i.e., backscatters) cannot reach the level that reader receiver can process tag data; bit-error rate can be higher. Overall, backscatter levels should be high enough so that reader receiver can correctly function. After discussing link budget, we carried out practical measurements on fading effects between two circularly polarized UHF RFID antennas in a small scale area.

  • PDF

W-band Single-chip Receiver MMIC for FMCW Radar (FMCW 레이더용 W-대역 단일칩 수신기 MMIC)

  • Lee, Seokchul;Kim, Youngmin;Lee, Sangho;Lee, Kihong;Kim, Wansik;Jeong, Jinho;Kwon, Youngwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.159-168
    • /
    • 2012
  • In this paper, a W-band single-chip receiver MMIC for FMCW(Frequency-modulated continuous-wave) radar is presented using $0.15{\mu}m$ GaAs pHEMT technology. The receiver MMIC consists of a 4-stage low noise amplifier(LNA), a down-converting mixer and a 3-stage LO buffer amplifier. The LNA is designed to exhibit a low noise figure and high linearity. A resistive mixer is adopted as a down-converting mixer in order to obtain high linearity and low noise performance at low IF. An additional LO buffer amplifier is also demonstrated to reduce the required LO power of the W-band mixer. The fabricated W-band single-chip receiver MMIC shows an excellent performance such as a conversion gain of 6.2 dB, a noise figure of 5.0 dB and input 1-dB compression point($P_{1dB,in}$) of -12.8 dBm, at the RF frequency of $f_0$ GHz, LO input power of -1 dBm and IF frequency of 100 MHz.

Design of 24-GHz 1Tx 2Rx FMCW Transceiver (24 GHz 1Tx 2Rx FMCW 송수신기 설계)

  • Kim, Tae-Hyun;Kwon, Oh-Yun;Kim, Jun-Seong;Park, Jae-Hyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.758-765
    • /
    • 2018
  • This paper presents a 24-GHz frequency-modulated continuous wave(FMCW) radar transceiver with two Rx and one Tx channels in 65-nm complementary metal-oxide-semiconductor(CMOS) process and implemented it on a radar system using the developed transceiver chip. The transceiver chip includes a $14{\times}$ frequency multiplier, low-noise amplifier, down-conversion mixer, and power amplifier(PA). The transmitter achieves >10 dBm output power from 23.8 to 24.36 GHz and the phase noise is -97.3 GHz/Hz at a 1-MHz offset. The receiver achieves 25.2 dB conversion gain and output $P_{1dB}$ of -31.7 dBm. The transceiver consumes 295 mW of power and occupies an area of $1.63{\times}1.6mm^2$. The radar system is fabricated on a low-loss Duroid printed circuit board(PCB) stacked on the low-cost FR4 PCBs. The chip and antenna are placed on the Duroid PCB with interconnects and bias, gain blocks and FMCW signal-generating circuitry are mounted on the FR4 PCB. The transmit antenna is a $4{\times}4$ patch array with 14.76 dBi gain and receiving antennas are two $4{\times}2$ patch antennas with a gain of 11.77 dBi. The operation of the radar is evaluated and confirmed by detecting the range and azimuthal angle of the corner reflectors.

A compact and low-power consumable device for continuous monitoring of biosignal (소형화 및 저전력소모를 구현한 실시간 생체신호 측정기 개발)

  • Cho, Jung-Hyun;Yoon, Gil-Won
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.334-340
    • /
    • 2006
  • A compact biosignal monitoring device was developed. Electrodes for electrocardiogram (ECG) and a LED and silicon detector for photoplethysmogram (PPG) were used. A lead II type was arranged for ECG measurement and reflected light was measured at the finger tip for PPG. A single chip microprocessor (model ADuC812, Analog Device) controlled a measurement protocol and processed measured signals. PPG and ECG had a sampling rate of 300 Hz with 8-bit resolution. The maximum power consumption was 100 mW. The microprocessor computed pulse transit time (PTT) between the R-wave of ECG and the peak of PPG. To increase the resolution of PTT, analog peak detectors obtained the peaks of ECG and PPG whose interval was calculated using an internal clock cycle of 921.6 kHz. The device was designed to be operated by 3-volt battery. Biosignals can be measured for $2{\sim}3$ days continuously without the external interruptions and data is stored to an on-board memory. Our system was successfully tested with human subjects.

Cutting Characteristics of Dry Turning Using Compressed Air (압축공기를 이용한 건식 선삭가공의 절삭특성)

  • Song Chun-Sam;Kim Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2005
  • The purposes of using cutting fluid during cutting have been cooling, lubricating, chip washing, and anti-corroding. However, the present manufacturing industry restricts the use of cutting fluid because cutting fluid contains poisonous substances which are harmful to the human body. Therefore dry cutting becomes an unavoidable assignment and a lot of researches have studied cutting methods without using cutting fluid. Because dry turning is a continuous work, tools life is reduced by continuous heat generation and surface gets rough due to reduced lubrication, so it is important to consider these situations. In this paper, the way of selecting the optimal machining condition by the minimum number of experiments and the effectiveness of using compressed air in high hardness materials through Taguchi method have been found. Dry cutting using compressed air showed better cutting characteristics than normal dry cutting with respect to by cutting force, tool wear, and surface roughness. Also, the optimal machining condition f3r dry cutting using compressed air could be selected through Taguchi method.

The Vibration Measurement of Boring Process by Using the Optical Fiber Sensor at inside of Boring Bar (광섬유 센서의 보링 바 삽입에 의한 진동측정)

  • Song, Doo-Sang;Hong, Jun-Hee;Guo, Yang-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.709-715
    • /
    • 2011
  • Chattering in cutting operations are usually a cumbersome part of the manufacturing process in mechanical. Particular, machining performance such as that of the boring process is limited by cutting condition at the movable components. Among various sources of chatter vibration, detrimental point in cutting condition is found a mechanical condition on overhang. It limits cutting speed, depth, surface roughness and tool wear failure as result because the all properties are varying with the metal removal process. In this case, we have to observe the resonance frequencies of a boring bar for continuous cutting. In the established research, boring bar vibration of cutting system has been measured with the aid of accelerometer. However, the inherent parameters of internal turning operations are severely limit for the real time monitoring on accelerometers. At this point, this paper is proposed other method for real time monitoring during continuous cutting with optical fiber at the inside of boring bar. This method has been used a plastic fiber in the special jig on boring bar by based on experimental modal analysis. In this study, improvement of monitoring system on continuous internal cutting was attempted using optical fiber sensor of inside type because usually chattering is investigated experimentally measuring the variation in chip thickness. It is demonstrated that the optical fiber sensor is possibility to measure of chattering with real time in boring process.

A Study on Multimedia Processor Architecture (멀티미디어 프로세서 아키텍쳐에 관한 연구)

  • Park, Chun-Myoung;Lee, Taek-Keun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1177-1180
    • /
    • 2005
  • This paper present a method of constructing the multimedia processor architecture. The proposed multimedia processor architecture be able to handle each text, sound, and video in one chip. Also it have interactive function that is a characteristics of multimedia. Specially, the proposed multimedia processor be able to addressing nodes in memory map without software, and it is completely reconfigurable depend on data. Also it as able to process time and space common that have synchronous/asynchronous and it is able to protect continuous and dynamic media bus collision, and local and overall common memory structure. The proposed multimedia processor architecture apply to virtual reality and mixed reality.

  • PDF

Turning of Si3N4 ceramics preheated by Laser (레이저 예열에 의한 $Si_3N_4$ 세라믹스의 선삭가공)

  • Kim, S.W.;Lee, J.H.;Seo, J.;Shin, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1493-1498
    • /
    • 2007
  • Silicon Nitride ($Si_3N_4$), which is widely used in a variety of applications, is hard-to-machine due to its high hardness. At high temperature (e.g. above $1000^{\circ}C$), however, the machinability can be greatly improved. In this work, we used a $CO_2$ laser with a high absorptivity to $Si_3N_4$ of 0.9 to preheat the surface of a rothting $Si_3N_4$ rod. Preheating and turning of $Si_3N_4$ was executed at the same time. The result of machining was MRR of $8.0mm^3/s$ that is four times faster than normal grinding. Continuous chip formation was observed by a microscope.

  • PDF

A Simple Discrete Cosine Transform Systolic Array Based on DFT for Video Codec (DFT에 의한 비데오 코덱용 DCT의 단순한 시스톨릭 어레이)

  • 박종오;이광재;양근호;박주용;이문호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1880-1885
    • /
    • 1989
  • In this paper, a new approach for systolic array realizing the discrete cosine transform (DCT) based on discrete Fourier transform (DFT) of an input sequence is presented. The proposed array is based on a simple modified DFT(MDFT) version of the Goertzel algorithm combined with Kung's approach and is proved perfectly. This array requires N cells, one multiplier and takes N clock cycles to produce a complete N-point DCT and also is able to process a continuous stream of data sequences. We have analyzed the output signal-to-noise ratio(SNR) and designed the circuit level layout of one-PE chip. The array coefficients are static adn thus stored-product ROM's can be used in place of multipliers to limit cost as eliminate errors due to coefficients quantization.

  • PDF

A Study on X-band Frequency Synthesizer for Radar Transceiver (레이더 송수신기용 X 밴드 주파수 합성기에 관한 연구)

  • Park, Dong-Kook;Lee, Hyun-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.444-448
    • /
    • 2006
  • In this paper, a frequency synthesizer for X-band FMCW radars is proposed. Some X-band FMCW radars have been used as a level sensor for tanker ship and the resolution of the level sensor may be mainly depend on linearity of frequency sweep. For a linear frequency sweep. the proposed synthesizer employs a phase-locked loop using prescalars and a high speed digital PLL chip. The measured results show that the linear frequency sweep range is from 10 GHz to 11 GHz and the output power of the synthesizer is minium 7 dBm. and the phase noise is about -80 dBc/Hz at 100 KHz offset from 11 GHz.