• Title/Summary/Keyword: Continuous assessment approach

Search Result 71, Processing Time 0.025 seconds

An Efficient Taguchi Approach for the Performance Optimization of Health, Safety, Environment and Ergonomics in Generation Companies

  • Azadeh, Ali;Sheikhalishahi, Mohammad
    • Safety and Health at Work
    • /
    • v.6 no.2
    • /
    • pp.77-84
    • /
    • 2015
  • Background: A unique framework for performance optimization of generation companies (GENCOs) based on health, safety, environment, and ergonomics (HSEE) indicators is presented. Methods: To rank this sector of industry, the combination of data envelopment analysis (DEA), principal component analysis (PCA), and Taguchi are used for all branches of GENCOs. These methods are applied in an integrated manner to measure the performance of GENCO. The preferred model between DEA, PCA, and Taguchi is selected based on sensitivity analysis and maximum correlation between rankings. To achieve the stated objectives, noise is introduced into input data. Results: The results show that Taguchi outperforms other methods. Moreover, a comprehensive experiment is carried out to identify the most influential factor for ranking GENCOs. Conclusion: The approach developed in this study could be used for continuous assessment and improvement of GENCO's performance in supplying energy with respect to HSEE factors. The results of such studies would help managers to have better understanding of weak and strong points in terms of HSEE factors.

Prevention and Management of Musculoskeletal Disorders in Automobile-related Industries (자동차 관련 업종에서의 근골격계질환 예방과 관리)

  • Lim, Hyeon-Kyo;Luo, Meiling;Kim, Dong-Gyun;Kim, Hong-Young
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.479-486
    • /
    • 2010
  • Automobile-related industries have been a few of leading ones among domestic industries reporting high rates of musculoskeletal disorders (WMSD's). In this paper, major ergonomic aspects of automobile-related works were reviewed with reference to WMSD's. According to the result, high repeatability of works with as short as 1 minute or less, awkward postures required, excessive forces, and vibrations due to power tools were drawn out as major physical factors. To eliminate or mitigate those factors - at least in automobile-related industries - ergonomic approach has tried for more than a decade. With all, however, ergonomists still seem to confront with several problems to be solved such as development of appropriate assessment tools, enhancement of work improvement activities, system establishment for continuous prevention and management of WMSD's. As lots of previous researches declared, it was concluded that ergonomic approach would collaborate with other approaches such as ndustrial medicine considering physical factors as well as psychosocial factors, and that the necessity of an integrated Occupational Safety and Health Management System(OHSMS) was mentioned.

Assessment of Organic Matter Sources in the Singil Stream Flowing into Lake Shihwa, South Korea

  • Kim, Dahae;Kim, Jung-Hyun;Kang, Sujin;Kim, Min-Seob;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.2
    • /
    • pp.138-147
    • /
    • 2020
  • The Singil Stream, flowing into an artificial lake, Lake Shihwa (South Korea), experiences a strong anthropogenic pressure with continuous organic matter (OM) inputs from rural, urban, and industrial areas. In this study, we investigated suspended particulate matter (SPM) and streambed sediments collected along the Singil Stream in 2014 and 2016, by applying a dual element approach (δ13C and δ15N) to identify OM sources. The SPM and streambed sediment samples from the indusrial area showed higher organic carbon and nitrogen concentrations (or contents) than those from the other areas, with distinctively lower δ15N values. Accordingly, our dual element approach indicates that the industrial area was the predominant OM source influencing OM quality and thus water quality of the Singil Stream flowing into Lake Shihwa during the study periods. However, further studies are necessary to better constrain OM sources in the Singil Stream since OM sources from the industrial area appear to be complex.

Structural health monitoring data reconstruction of a concrete cable-stayed bridge based on wavelet multi-resolution analysis and support vector machine

  • Ye, X.W.;Su, Y.H.;Xi, P.S.;Liu, H.
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.555-562
    • /
    • 2017
  • The accuracy and integrity of stress data acquired by bridge heath monitoring system is of significant importance for bridge safety assessment. However, the missing and abnormal data are inevitably existed in a realistic monitoring system. This paper presents a data reconstruction approach for bridge heath monitoring based on the wavelet multi-resolution analysis and support vector machine (SVM). The proposed method has been applied for data imputation based on the recorded data by the structural health monitoring (SHM) system instrumented on a prestressed concrete cable-stayed bridge. The effectiveness and accuracy of the proposed wavelet-based SVM prediction method is examined by comparing with the traditional autoregression moving average (ARMA) method and SVM prediction method without wavelet multi-resolution analysis in accordance with the prediction errors. The data reconstruction analysis based on 5-day and 1-day continuous stress history data with obvious preternatural signals is performed to examine the effect of sample size on the accuracy of data reconstruction. The results indicate that the proposed data reconstruction approach based on wavelet multi-resolution analysis and SVM is an effective tool for missing data imputation or preternatural signal replacement, which can serve as a solid foundation for the purpose of accurately evaluating the safety of bridge structures.

Approaching the assessment of ageing bridge infrastructure

  • Boller, Christian;Starke, Peter;Dobmann, Gerd;Kuo, Chen-Ming;Kuo, Chung-Hsin
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.593-608
    • /
    • 2015
  • In many of the industrialized countries an increasing amount of infrastructure is ageing. This has become specifically critical to bridges which are a major asset with respect to keeping an economy alive. Life of this infrastructure is scattering but often little quantifiable information is known with respect to its damage condition. This article describes how a damage tolerance approach used in aviation today may even be applied to civil infrastructure in the sense that operational life can be applied in the context of modern life cycle management. This can be applied for steel structures as a complete process where much of the damage accumulation behavior is known and may even be adopted to concrete structures in principle, where much of the missing knowledge in damage accumulation has to be substituted by enhanced inspection. This enhanced and continuous inspection can be achieved through robotic systems in a first approach as well as built in sensors in the sense of structural health monitoring (SHM).

Critical Success Factors of Supplier Quality Management

  • Yeung, I-Ki;Chin, Kwai-Sang
    • International Journal of Quality Innovation
    • /
    • v.5 no.1
    • /
    • pp.85-109
    • /
    • 2004
  • Supplier quality management (SQM) is considered as a proactive approach in the buyers' perspective to seek for continuous supply quality improvement and collaborative ongoing alliance between buyers and suppliers. Therefore, it is important for the buyers to understand their circumstances for managing their suppliers, and thereby to search for an improved way to rectify managerial deficiencies, if any. This paper aims to identify the critical factors of SQM, and then propose a hierarchical framework which can facilitate the assessment of their SQM performance in the buyers' perspective and also serve as a working tool for managing supply quality performance.

Voltage Control and Security Assessment of Power System Using Mixed Integer Linear Programming (혼합정수 선형계획법을 이용한 계통의 전압제어 및 안전도 평가)

  • 김두현;김상철
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.70-76
    • /
    • 1999
  • In this paper, a mixed-integer programming approach is presented for adjusting the voltage profiles in a power system. The advent of large-scaled system makes the reactive power and voltage problem-an attempt to achieve an overall improvement of system security, service quality and economy-more complex and seriously, Although the problem is originally a nonlinear optimization problem, it can be formulated as a mixed integer linear programming(MILP) problem without deteriorating of solution accuracy to a certain extent. The MILP code is developed by the branch and bound process search for the optimal solution. The variable for modeling transformer tap positions is handled as discrete one, and other variables continuous ones. Numerical data resulting from case study using a modified IEEE 30 bus system with outaged line show that the MILP can produce more reductions of magnitude in the operating cost. The convergence characteristics of the results are also presented and discussed.

  • PDF

Probabilistic assessment on the basis of interval data

  • Thacker, Ben H.;Huyse, Luc J.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.3
    • /
    • pp.331-345
    • /
    • 2007
  • Uncertainties enter a complex analysis from a variety of sources: variability, lack of data, human errors, model simplification and lack of understanding of the underlying physics. However, for many important engineering applications insufficient data are available to justify the choice of a particular probability density function (PDF). Sometimes the only data available are in the form of interval estimates which represent, often conflicting, expert opinion. In this paper we demonstrate that Bayesian estimation techniques can successfully be used in applications where only vague interval measurements are available. The proposed approach is intended to fit within a probabilistic framework, which is established and widely accepted. To circumvent the problem of selecting a specific PDF when only little or vague data are available, a hierarchical model of a continuous family of PDF's is used. The classical Bayesian estimation methods are expanded to make use of imprecise interval data. Each of the expert opinions (interval data) are interpreted as random interval samples of a parent PDF. Consequently, a partial conflict between experts is automatically accounted for through the likelihood function.

Stiffness modeling of RC columns reinforced with plain rebars

  • Ozcan, Okan
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.163-180
    • /
    • 2014
  • Inaccurate predictions of effective stiffness for reinforced concrete (RC) columns having plain (undeformed) longitudinal rebars may lead to unsafe performance assessment and strengthening of existing deficient frames. Currently utilized effective stiffness models cover RC columns reinforced with deformed longitudinal rebars. A database of 47 RC columns (33 columns had continuous rebars and the remaining had spliced reinforcement) that were longitudinally reinforced with plain rebars was compiled from literature. The existing effective stiffness equations were found to overestimate the effective stiffness of columns with plain rebars for all levels of axial loads. A new approach that considers the contributions of flexure, shear and bond slip to column deflections prior to yielding was proposed. The new effective stiffness formulations were simplified without loss of generality for columns with and without lap-spliced plain rebars. In addition, the existing stiffness models for the columns with deformed rebars were improved while taking poor bond characteristics of plain rebars into account.

TECHNOLOGY-NEUTRAL NUCLEAR POWER PLANT REGULATION: IMPLICATIONS OF A SAFETY GOALS- DRIVEN PERFORMANCE-BASED REGULATION

  • MODARRES MOHAMMAD
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.221-230
    • /
    • 2005
  • This paper reviews the pivotal phases of the evolution of the current technology-dependent nuclear power safety regulation in the United States. Understanding of this evolution is essential to the development of any future regulatory paradigm, including the technology-neutral regulatory approach that the U.S. Nuclear Regulatory Commission (NRC) has recently embarked on to develop. The paper proposes and examines the implications of a predominately rationalist and best-estimate probabilistic regulatory framework called safety goals-driven performance-based regulation. This framework relies on continuous assessment of performance of a set of time-dependent safety-critical systems, structures and components that assure attainment of a broad set of technology-neutral protective, mitigative, and preventive goals. Finally, the paper discusses the steps needed to develop a corresponding technology-neutral regulatory system from the proposed framework.