• Title/Summary/Keyword: Continuous Speech Recognition

Search Result 223, Processing Time 0.024 seconds

A Syllabic Segmentation Method for the Korean Continuous Speech (우리말 연속음성의 음절 분할법)

  • 한학용;고시영;허강인
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.70-75
    • /
    • 2001
  • This paper proposes a syllabic segmentation method for the korean continuous speech. This method are formed three major steps as follows. (1) labeling the vowel, consonants, silence units and forming the Token the sequence of speech data using the segmental parameter in the time domain, pitch, energy, ZCR and PVR. (2) scanning the Token in the structure of korean syllable using the parser designed by the finite state automata, and (3) re-segmenting the syllable parts witch have two or more syllables using the pseudo-syllable nucleus information. Experimental results for the capability evaluation toward the proposed method regarding to the continuous words and sentence units are 73.5%, 85.9%, respectively.

  • PDF

Common Speech Database Collection for Telecommunications (통신망환경 한국어 공통음성 DB 구축)

  • Kim Sanghun;Park Moonwhan;Kim Hyunsuk
    • Proceedings of the KSPS conference
    • /
    • 2003.05a
    • /
    • pp.23-26
    • /
    • 2003
  • This paper presents common speech database collection for telecommunication applications. During 3 year project, we will construct very large scale speech and text databases for speech recognition, speech synthesis, and speaker identification. The common speech database has been considered various communication environments, distribution of speakers' sex, distribution of speakers' age, and distribution of speakers' region. It consists of Korean continuous digit, isolated words, and sentences which reflects Korean phonetic coverage. In addition, it consists of various pronunciation style such as read speech, dialogue speech, and semi-spontaneous speech. Thanks to the common speech databases, the duplicated resources of Korean speech industries are prohibited. It encourages domestic speech industries and activate speech technology domestic market.

  • PDF

Korean Speech Recognition using Dynamic Multisection Model (DMS 모델을 이용한 한국어 음성 인식)

  • 안태옥;변용규;김순협
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1933-1939
    • /
    • 1990
  • In this paper, we proposed an algorithm which used backtracking method to get time information, and it be modelled DMS (Dynamic Multisection) by feature vectors and time information whic are represented to similiar feature in word patterns spoken during continuous time domain, for Korean Speech recognition by independent speaker using DMS. Each state of model is represented time sequence, and have time information and feature vector. Typical feature vector is determined as the feature vector of each state to minimize the distance between word patterns. DDD Area names are selected as recognition wcabulary and 12th LPC cepstrum coefficients are used as the feature parameter. State of model is made 8 multisection and is used 0.2 as weight for time information. Through the experiment result, recognition rate by DMS model is 94.8%, and it is shown that this is better than recognition rate (89.3%) by MSVQ(Multisection Vector Quantization) method.

  • PDF

Korean Phoneme Recognition Using Neural Networks (신경회로망 이용한 한국어 음소 인식)

  • 김동국;정차균;정홍
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.4
    • /
    • pp.360-373
    • /
    • 1991
  • Since 70's, efficient speech recognition methods such as HMM or DTW have been introduced primarily for speaker dependent isolated words. These methods however have confronted with difficulties in recognizing continuous speech. Since early 80's, there has been a growing awareness that neural networks might be more appropriate for English and Japanese phoneme recognition using neural networks. Dealing with only a part of vowel or consonant set, Korean phoneme recognition still remains on the elementary level. In this light, we develop a system based on neural networks which can recognize major Korean phonemes. Through experiments using two neural networks, SOFM and TDNN, we obtained remarkable results. Especially in the case of using TDNN, the recognition rate was estimated about 93.78% for training data and 89.83% for test data.

Utilization of Syllabic Nuclei Location in Korean Speech Segmentation into Phonemic Units (음절핵의 위치정보를 이용한 우리말의 음소경계 추출)

  • 신옥근
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.13-19
    • /
    • 2000
  • The blind segmentation method, which segments input speech data into recognition unit without any prior knowledge, plays an important role in continuous speech recognition system and corpus generation. As no prior knowledge is required, this method is rather simple to implement, but in general, it suffers from bad performance when compared to the knowledge-based segmentation method. In this paper, we introduce a method to improve the performance of a blind segmentation of Korean continuous speech by postprocessing the segment boundaries obtained from the blind segmentation. In the preprocessing stage, the candidate boundaries are extracted by a clustering technique based on the GLR(generalized likelihood ratio) distance measure. In the postprocessing stage, the final phoneme boundaries are selected from the candidates by utilizing a simple a priori knowledge on the syllabic structure of Korean, i.e., the maximum number of phonemes between any consecutive nuclei is limited. The experimental result was rather promising : the proposed method yields 25% reduction of insertion error rate compared that of the blind segmentation alone.

  • PDF

Sequential Adaptation Algorithm Based on Transformation Space Model for Speech Recognition (음성인식을 위한 변환 공간 모델에 근거한 순차 적응기법)

  • Kim, Dong-Kook;Chang, Joo-Hyuk;Kim, Nam-Soo
    • Speech Sciences
    • /
    • v.11 no.4
    • /
    • pp.75-88
    • /
    • 2004
  • In this paper, we propose a new approach to sequential linear regression adaptation of continuous density hidden Markov models (CDHMMs) based on transformation space model (TSM). The proposed TSM which characterizes the a priori knowledge of the training speakers associated with maximum likelihood linear regression (MLLR) matrix parameters is effectively described in terms of the latent variable models. The TSM provides various sources of information such as the correlation information, the prior distribution, and the prior knowledge of the regression parameters that are very useful for rapid adaptation. The quasi-Bayes (QB) estimation algorithm is formulated to incrementally update the hyperparameters of the TSM and regression matrices simultaneously. Experimental results showed that the proposed TSM approach is better than that of the conventional quasi-Bayes linear regression (QBLR) algorithm for a small amount of adaptation data.

  • PDF

Semi-Continuous Hidden Markov Model with the MIN Module (MIN 모듈을 갖는 준연속 Hidden Markov Model)

  • Kim, Dae-Keuk;Lee, Jeong-Ju;Jeong, Ho-Kyoun;Lee, Sang-Hee
    • Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.11-26
    • /
    • 2000
  • In this paper, we propose the HMM with the MIN module. Because initial and re-estimated variance vectors are important elements for performance in HMM recognition systems, we propose a method which compensates for the mismatched statistical feature of training and test data. The MIN module function is a differentiable function similar to the sigmoid function. Unlike a continuous density function, it does not include variance vectors of the data set. The proposed hybrid HMM/MIN module is a unified network in which the observation probability in the HMM is replaced by the MIN module neural network. The parameters in the unified network are re-estimated by the gradient descent method for the Maximum Likelihood (ML) criterion. In estimating parameters, the variance vector is not estimated because there is no variance element in the MIN module function. The experiment was performed to compare the performance of the proposed HMM and the conventional HMM. The experiment measured an isolated number for speaker independent recognition.

  • PDF

Guassian pdfs Clustering Using a Divergence Measure-based Neural Network (발산거리 기반의 신경망에 의한 가우시안 확률 밀도 함수의 군집화)

  • 박동철;권오현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.627-631
    • /
    • 2004
  • An efficient algorithm for clustering of GPDFs(Gaussian Probability Density Functions) in a speech recognition model is proposed in this paper. The proposed algorithm is based on CNN with the divergence as its distance measure and is applied to a speech recognition. The algorithm is compared with conventional Dk-means(Divergence-based k-means) algorithm in CDHMM(Continuous Density Hidden Markov Model). The results show that it can reduce about 31.3% of GPDFs over Dk-means algorithm without suffering any recognition performance. When compared with the case that no clustering is employed and full GPDFs are used, the proposed algorithm can save about 61.8% of GPDFs while preserving the recognition performance.

Speaker-Dependent Emotion Recognition For Audio Document Indexing

  • Hung LE Xuan;QUENOT Georges;CASTELLI Eric
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.92-96
    • /
    • 2004
  • The researches of the emotions are currently great interest in speech processing as well as in human-machine interaction domain. In the recent years, more and more of researches relating to emotion synthesis or emotion recognition are developed for the different purposes. Each approach uses its methods and its various parameters measured on the speech signal. In this paper, we proposed using a short-time parameter: MFCC coefficients (Mel­Frequency Cepstrum Coefficients) and a simple but efficient classifying method: Vector Quantification (VQ) for speaker-dependent emotion recognition. Many other features: energy, pitch, zero crossing, phonetic rate, LPC... and their derivatives are also tested and combined with MFCC coefficients in order to find the best combination. The other models: GMM and HMM (Discrete and Continuous Hidden Markov Model) are studied as well in the hope that the usage of continuous distribution and the temporal behaviour of this set of features will improve the quality of emotion recognition. The maximum accuracy recognizing five different emotions exceeds $88\%$ by using only MFCC coefficients with VQ model. This is a simple but efficient approach, the result is even much better than those obtained with the same database in human evaluation by listening and judging without returning permission nor comparison between sentences [8]; And this result is positively comparable with the other approaches.

  • PDF

A Study on the Korean Syllable As Recognition Unit (인식 단위로서의 한국어 음절에 대한 연구)

  • Kim, Yu-Jin;Kim, Hoi-Rin;Chung, Jae-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.64-72
    • /
    • 1997
  • In this paper, study and experiments are performed for finding recognition unit fit which can be used in large vocabulary recognition system. Specifically, a phoneme that is currently used as recognition unit and a syllable in which Korean is well characterized are selected. From comparisons of recognition experiments, the study is performed whether a syllable can be considered as recognition unit of Korean recognition system. For report of an objective result of the comparison experiment, we collected speech data of a male speaker and processed them by hand-segmentation for phoneme boundary and labeling to construct speech database. And for training and recognition based on HMM, we used HTK (HMM Tool Kit) 2.0 of commercial tool from Entropic Co. to experiment in same condition. We applied two HMM model topologies, 3 emitting state of 5 state and 6 emitting state of 8 state, in Continuous HMM on training of each recognition unit. We also used 3 sets of PBW (Phonetically Balanced Words) and 1 set of POW(Phonetically Optimized Words) for training and another 1 set of PBW for recognition, that is "Speaker Dependent Medium Vocabulary Size Recognition." Experiments result reports that recognition rate is 95.65% in phoneme unit, 94.41% in syllable unit and decoding time of recognition in syllable unit is faster by 25% than in phoneme.

  • PDF