• Title/Summary/Keyword: Continuous Search Space

Search Result 61, Processing Time 0.025 seconds

Evolutionary Analysis for Continuous Search Space (연속탐색공간에 대한 진화적 해석)

  • Lee, Joon-Seong;Bae, Byeong-Gyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.206-211
    • /
    • 2011
  • In this paper, the evolutionary algorithm was specifically formulated for optimization with continuous parameter space. The proposal was motivated by the fact that the genetic algorithms have been most intensively reported for parameter identification problems with continuous search space. The difference of primary characteristics between genetic algorithms and the proposed algorithm, discrete or continuous individual representation has made different areas to which the algorithms should be applied. Results obtained by optimization of some well-known test functions indicate that the proposed algorithm is superior to genetic algorithms in all the performance, computation time and memory usage for continuous search space problems.

Dolphin Echolocation Optimization: Continuous search space

  • Kaveh, A.;Farhoudi, N.
    • Advances in Computational Design
    • /
    • v.1 no.2
    • /
    • pp.175-194
    • /
    • 2016
  • Nature has provided inspiration for most of the man-made technologies. Scientists believe that dolphins are the second to humans in smartness and intelligence. Echolocation is the biological sonar used by dolphins for navigation and hunting in various environments. This ability of dolphins is mimicked in this paper to develop a new optimization method. Dolphin Echolocation Optimization (DEO) is an optimization method based on dolphin's approach for hunting food and exploration of environment. DEO has already been developed for discrete optimization search space and here it is extended to continuous search space. DEO has simple rules and is adjustable for predetermined computational cost. DEO provides the optimum results and leads to alternative optimality curves suitable for the problem. This algorithm has a few parameters and it is applicable to a wide range of problems like other metaheuristic algorithms. In the present work, the efficiency of this approach is demonstrated using standard benchmark problems.

Large Vocabulary Continuous Speech Recognition Based on Language Model Network (언어 모델 네트워크에 기반한 대어휘 연속 음성 인식)

  • 안동훈;정민화
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.543-551
    • /
    • 2002
  • In this paper, we present an efficient decoding method that performs in real time for 20k word continuous speech recognition task. Basic search method is a one-pass Viterbi decoder on the search space constructed from the novel language model network. With the consistent search space representation derived from various language models by the LM network, we incorporate basic pruning strategies, from which tokens alive constitute a dynamic search space. To facilitate post-processing, it produces a word graph and a N-best list subsequently. The decoder is tested on the database of 20k words and evaluated with respect to accuracy and RTF.

Structural Optimization Using Tabu Search in Discrete Design Space (타부탐색을 이용한 이산설계공간에서의 구조물의 최적설계)

  • Lee, Kwon-Hee;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.798-806
    • /
    • 2003
  • Structural optimization has been carried out in continuous or discrete design space. Methods for continuous design have been well developed though they are finding the local optima. On the contrary, the existing methods for discrete design are extremely expensive in computational cost or not robust. In this research, an algorithm using tabu search is developed fur the discrete structural designs. The tabu list and the neighbor function of the Tabu concepts are introduced to the algorithm. It defines the number of steps, the maximum number for random searches and the stop criteria. A tabu search is known as the heuristic approach while genetic algorithm and simulated annealing algorithm are attributed to the stochastic approach. It is shown that an algorithm using the tabu search with random moves has an advantage of discrete design. Furthermore, the suggested method finds the reliable optimum for the discrete design problems. The existing tabu search methods are reviewed. Subsequently, the suggested method is explained. The mathematical problems and structural design problems are investigated to show the validity of the proposed method. The results of the structural designs are compared with those from a genetic algorithm and an orthogonal array design.

Features of Attention Shown at Continuous Observation of Department-Store Space (백화점 공간의 연속 주시에 나타난 주의집중 특성)

  • Choi, Gae-Young
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.6
    • /
    • pp.128-136
    • /
    • 2015
  • This research, which has been planned to appreciate the features of continuous observation of space, has applied the procedure of acquiring continuous visual information when the act of watching takes place along the time to analyze the space characteristics through the scenes and time so that the features of attention shown in the process of acquiring visual information at the time of observing continuous scenes might be estimated. For analysis of the features of continuous observation was set up the premise that the features of observation and perception vary depending on gender, when the women shops in department stores were selected as research objects. The observation features found at the time of continuous observation of selling spaces in department stores were focused on two analysis methods in order to compare the differences and characteristics of the two. The followings are the findings. First, the area with predominant observation was found to be 87.1% in both methods. It was found that the analysis of observation features by "Analysis I" was useful for inter-sectional comparison of continuous images. Second, in case of extracting predominant sections, the ceiling or the structures which are the backgrounds rarely attracted any eyes. Depending on analysis method, there was the gap of 14.3%~25.0% between observed sections. Third, in case that the hall is curved, the eyes were found to be expanded from side to side and up and down. The review of observation numbers of predominant sections makes it possible to decide whether it should be regarded as (1) unstability or (2) expanding search, and when the images are enlarged from distant view to close-range view, the weakening vanishing point results in the increase of expanded search of surroundings. Accordingly, it was found that the characteristics of images has effects on the observation features when any space was continuously observed. Furthermore, the difference of analysis methods also was found to be likely to cause big differences in the results of analyzing observation features.

A Study of New Evolutionary Approach for Multiobjective Optimization (다목적함수 최적화를 위한 새로운 진화적 방법 연구)

  • Shim, Mun-Bo;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.987-992
    • /
    • 2002
  • In an attempt to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Pareto-optimal points, instead of a single point. In this paper, pareto-based Continuous Evolutionary Algorithms for Multiobjective Optimization problems having continuous search space are introduced. This algorithm is based on Continuous Evolutionary Algorithms to solve single objective optimization problems with a continuous function and continuous search space efficiently. For multiobjective optimization, a progressive reproduction operator and a niche-formation method fur fitness sharing and a storing process for elitism are implemented in the algorithm. The operator and the niche formulation allow the solution set to be distributed widely over the Pareto-optimal tradeoff surface. Finally, the validity of this method has been demonstrated through a numerical example.

Optimal control of continuous system using genetic algorithms (유전 알고리듬을 이용한 연속 공정의 최적 제어)

  • Lee, Moo-Ho;Han, Chonghun;Chang, Kun-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.46-51
    • /
    • 1997
  • The optimal control of a continuous process has been performed using genetic algorithms(GAs). GAs are robust and easily applicable for complex and highly nonlinear problems. We introduce the heuristics 'dynamic range' which reduces the search space dramaticaly keeping the robust search of GAs. GAs with dynamic range show the better performance than SQP(Successive Quadratic Programing) method which converges to a local minimum. The proposed methology has been applied to the optimal control of the continuous MMA-VA copolymerization reactor for the production of the desired molecular wieght and the composition of VA in dead copolymer.

  • PDF

Modified Binary Particle Swarm Optimization using Genotype-Phenotype Concept (Version 2) (유전자형-표현형 개념을 적용한 수정된 이진 입자군집최적화 (버전 2))

  • Lim, Seungkyun;Lee, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.541-548
    • /
    • 2014
  • In this paper, we introduce a second version of modified binary particle swarm optimization using a concept of genotype-phenotype in genetic algorithms. Particle swarm optimization uses an information of difference between a position of the best solution and one's own position in the process of searching optimum. To obtain this difference of positions, the first version of modified binary particle swarm optimization uses a phenotype but the proposed second version uses a genotype. We can represent the solution space in large search space by using a genotype which provides continuous whole space as search space compared to a phenotype which provides only binary information. Experimental results in 10 De Jong benchmark function show that the second version outperforms the first version in six functions which has a broad search space and many local optima.

Size Optimization of Space Trusses Based on the Harmony Search Heuristic Algorithm (Harmony Search 알고리즘을 이용한 입체트러스의 단면최적화)

  • Lee Kang-Seok;Kim Jeong-Hee;Choi Chang-Sik;Lee Li-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.359-366
    • /
    • 2005
  • Most engineering optimization are based on numerical linear and nonlinear programming methods that require substantial gradient information and usually seek to improve the solution in the neighborhood of a starting point. These algorithm, however, reveal a limited approach to complicated real-world optimization problems. If there is more than one local optimum in the problem, the result may depend on the selection of an initial point, and the obtained optimal solution may not necessarily be the global optimum. This paper describes a new harmony search(HS) meta-heuristic algorithm-based approach for structural size optimization problems with continuous design variables. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. Two classical space truss optimization problems are presented to demonstrate the effectiveness and robustness of the HS algorithm. The results indicate that the proposed approach is a powerful search and optimization technique that may yield better solutions to structural engineering problems than those obtained using current algorithms.

  • PDF

Discriminative Training of Stochastic Segment Model Based on HMM Segmentation for Continuous Speech Recognition

  • Chung, Yong-Joo;Un, Chong-Kwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4E
    • /
    • pp.21-27
    • /
    • 1996
  • In this paper, we propose a discriminative training algorithm for the stochastic segment model (SSM) in continuous speech recognition. As the SSM is usually trained by maximum likelihood estimation (MLE), a discriminative training algorithm is required to improve the recognition performance. Since the SSM does not assume the conditional independence of observation sequence as is done in hidden Markov models (HMMs), the search space for decoding an unknown input utterance is increased considerably. To reduce the computational complexity and starch space amount in an iterative training algorithm for discriminative SSMs, a hybrid architecture of SSMs and HMMs is programming using HMMs. Given the segment boundaries, the parameters of the SSM are discriminatively trained by the minimum error classification criterion based on a generalized probabilistic descent (GPD) method. With the discriminative training of the SSM, the word error rate is reduced by 17% compared with the MLE-trained SSM in speaker-independent continuous speech recognition.

  • PDF