• 제목/요약/키워드: Continuous Flow Reactor

검색결과 155건 처리시간 0.023초

電氣傳導度 測定에 依한 連續流 攪拌槽의 混合時間 測定 (A Mixing Time Measurement by a Conductivity Method in a Continuous Flow Stirred Tank)

  • 강웅기
    • 대한화학회지
    • /
    • 제6권2호
    • /
    • pp.130-132
    • /
    • 1962
  • A new method of evaluating the mixing time in the continuous flow stirred tank is herein proposed. Experimental results to test the concept are also presented.The mixing time is defined as the time interval between the injection of a slug of an electrolyte solution into the tank and the moment at which an essentially straight line begins on a plot of the conductivity of effluent versus time.The proposed method of measuring the mixing time is valid even for the low mixing time (5 seconds) and the results obtained agree well with previous work, where the mixing time measurements were carried out by the injection of a dye into the feed stream.

  • PDF

연속공정에 의한 식물유의 바이오디젤유 전환 (Conversion of Vegetable Oil into Biodiesel Fuel by Continuous Process)

  • 현영진;김혜성
    • 한국응용과학기술학회지
    • /
    • 제19권4호
    • /
    • pp.327-334
    • /
    • 2002
  • Transesterfication of vegetable oils and methanol with alkaline catalyst was carried out to produce biodiesel fuel by continuous process. The process consists of two static mixers, one tubular reactor and two coolers and gave $96{\sim}99$% of methyl ester yield from soybean oil and rapeseed oil. Experimental variables were the molar ratios of methanol to vegetable oil, alkaline catalyst contents, flow rates, mixer element number. The optimum ranges of operating variables were as follows; reaction temperature of $70^{\circ}C$, l:6 of molar ratio of methanol to oil, O.4%(w/w) sodium hydroxide based on oil, static mixer elements number of 24 and 4 min. residence time.

충진층 반응기에서 고정화 cellulase에 의한 셀룰로스 가수 분해 (Hydrolysis of Cellulose by Immobilized Cellulase in a Packed Bed Reactor)

  • 강병철;이종백
    • 생명과학회지
    • /
    • 제23권11호
    • /
    • pp.1365-1370
    • /
    • 2013
  • 약 염기성 이온교환 수지에 cellulase를 고정화하였고 고정화 cellulase는 흡착 특성이 Langmuir 흡착 등온선을 잘 따랐다. pH와 온도에 대한 효소 활성은 고정화 효소가 우수한 특성을 보였다. 열에 대한 효소 활성은 1차식으로 감소하였고 고정화 효소가 자유 효소에 비해 열 안정성이 우수하였다. 초기 속도법을 통해서 자유 효소와 고정화 효소의 Michaelis-Menten 속도 상수를 결정하였고 속도상수 Km은 고정화 효소가 큰 값을 나타내었다. 충진층 반응기에서 셀룰로스의 전환 공정을 재순환에 의해 측정하였다. 투입되는 셀룰로스의 유량 변화에 대한 셀룰로스의 변환을 연속 공정에서 조사하였다. 장기 운전의 성능을 평가하기 위해 7일 통한 연속공정을 실시하였고 고정화 효소는 48%의 활성을 유지하였다.

Alginate-Titanium hydroxide에 의한 L-Lysine 생산 융합균주의 고정화 및 연속생산에의 적용

  • 서승현;임번삼;전문진
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1986년도 추계학술대회
    • /
    • pp.520.3-521
    • /
    • 1986
  • L-Lysine 생성균인 Corynebacterium glutamicum의 동종간 융합주 RS 99를 담체인 Alginate와 여기에 TiCl$_4$로부터 제조된 Titanium hydroxide를 혼합하여 각각 고정하고 이들의 Gel strength, 활성도 및 회분식 발효조건을 비교하였다. 그 결과 Alginate-Titanium hydroxide를 담체로 선정하여 고정화 C, glutamicum 융합주의 재사용성 및 안정성을 검토하였으며, Continuous-Flow Stirred-Tank Reactor를 구성하여 L-Lysine 의 연속발효를 시도하였다.

  • PDF

연속반응이 일어나는 연속류 교반조 반응기의 제어 (Control of a continuous flow stirred tank reactor with consecutive reactions)

  • 김종엽;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.232-237
    • /
    • 1986
  • Theoretical studies are performed for a nonisothermal CFSTR in which consecutive reactions take place. The local dynamic stability of an unstable steady state is investigated with relation to variations in the controller gain when the temperature is subjected to a proportional control. The control has significant in fluences upon the stability of the high temperature steady state as well as that of the intermediate steady state.

  • PDF

Experimental research on the mechanisms of condensation induced water hammer in a natural circulation system

  • Sun, Jianchuang;Deng, Jian;Ran, Xu;Cao, Xiaxin;Fan, Guangming;Ding, Ming
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3635-3642
    • /
    • 2021
  • Natural circulation systems (NCSs) are extensively applied in nuclear power plants because of their simplicity and inherent safety features. For some passive natural circulation systems in floating nuclear power plants (FNPPs), the ocean is commonly used as the heat sink. Condensation induced water hammer (CIWH) events may appear as the steam directly contacts the subcooled seawater, which seriously threatens the safe operation and integrity of the NCSs. Nevertheless, the research on the formation mechanisms of CIWH is insufficient, especially in NCSs. In this paper, the characteristics of flow rate and fluid temperature are emphatically analyzed. Then the formation types of CIWH are identified by visualization method. The experimental results reveal that due to the different size and formation periods of steam slugs, the flow rate presents continuous and irregular oscillation. The fluid in the horizontal hot pipe section near the water tank is always subcooled due to the reverse flow phenomenon. Moreover, the transition from stratified flow to slug flow can cause CIWH and enhance flow instability. Three types of formation mechanisms of CIWH, including the Kelvin-Helmholtz instability, the interaction of solitary wave and interface wave, and the pressure wave induced by CIWH, are obtained by identifying 67 CIWH events.

마이크로 액적/기포 유동반응기에서 ZnO 입자의 연속제조 특성 (Characteristics of Continuous Preparation of ZnO Powder in a Micro Drop/bubble Fluidized React)

  • 이승호;양시우;임대호;유동준;이찬기;강경민;강용
    • Korean Chemical Engineering Research
    • /
    • 제53권5호
    • /
    • pp.597-602
    • /
    • 2015
  • 직경이 0.03 m이고 높이가 1.5 m인 마이크로 액적/기포 유동반응기에서 ZnO 입자의 연속제조 특성을 검토하였다. 마이크로 액적을 운반하는 기체의 속도는 6.0 L/min, 전구체 중 Zn이온의 농도는 0.4 mol/L로 유지하였다. ZnO 입자의 합성을 위한 반응의 온도(973 K~1,273 K)와 마이크로 기포의 유속 (0~0.4 L/min)이 합성된 ZnO 입자의 기공 특성에 미치는 영향을 고찰하였다. 본 연구의 실험범위에서 ZnO 입자의 합성온도는 1,073 K가 합성된 ZnO 입자의 기공을 극대화하는데 최적이었다. 또한, 반응기에서 연속 제조되는 ZnO 입자의 평균크기는 반응온도가 증가함에 따라 감소하였으며 입자의 표면은 점점 매끄럽게 단순화되었다. 반응기 내부에 마이크로 기포를 유입함으로써 유입하지 않는 경우와 비교하여 합성된 ZnO 입자 내부에 기공을 효과적으로 형성시킬 수 있었으며, 평균 BET면적을 58%까지 증가시킬 수 있었다. 마이크로 액적/기포 유동반응기를 사용하여 연속 합성한 ZnO 입자의 평균입도는 반응온도에 따라 $1.25{\sim}1.75{\mu}m$이었다.

기포탑반응기에서 연속공정을 이용한 $BaTiO_3$ 분말의 제조 (The Synthesis of $BaTiO_3$ using continuous process in a bubble column reactor)

  • 현성호;김정환;허윤행
    • 환경위생공학
    • /
    • 제11권1호
    • /
    • pp.63-70
    • /
    • 1996
  • The synthesis of high purity and ultra-fine $BaTiO_3$ by precipitation with gaseous $NH_3$ as precipitator was investigated to find an alternative process to solve various problems of recent wet methods. A synthesis process for $BaTiO_3$ powder using $NH_3$ gas as a precipitator in a bubble column reactor was experimentally successful in developing the production process of piezoelectric ceramic $BaTiO_3$ powder. And a 2.33m1/sec is approprite for the feed flow rate, $BaTiO_3$ powder produced under above the condition is spherical type, its particle size was about $0.2{\mu}m$.

  • PDF

Design of Passive Treatment Systems for Mine Drainage Waters

  • Jeen, Sung-Wook
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권2호
    • /
    • pp.1-9
    • /
    • 2017
  • Passive treatment systems are commonly used for remediation of mine drainage waters because they do not require continuous chemical inputs and operation. In this study, the selection and design criteria for such systems were evaluated, particularly the two most commonly used ones, i.e., permeable reactive barriers (PRBs) and vertical flow biological reactors (VFBRs). PRBs and VFBRs are operated on the same principles in terms of biochemical reaction mechanisms, whereas differences relate to configuration, engineering, and water management. In this study, each of these systems were described with respect to key design variables, such as metal removal mechanisms and removal rates, effectiveness and longevity, general design and construction, flow capacity, and cost. The information provided from this study could be used as a design guideline when a passive treatment option is considered for potential remediation of a mine site.

유전체 장벽 방전 플라즈마 반응기를 이용한 페놀 처리 (Phenol Treatment Plasma Reactor of Dielectric Barrier Discharge)

  • 박영식
    • 한국환경과학회지
    • /
    • 제21권4호
    • /
    • pp.479-488
    • /
    • 2012
  • A Dielectric barrier discharge (DBD) plasma is shown in the present investigation to be effective of phenol degradation in the aqueous solutions in batch reactor with continuous air bubbling. Removal of phenol and effects of various parameters on the removal efficiency in the aqueous solution with high-voltage streamer discharge plasma are studied. The effect of 1st voltage (80 ~ 220 V), air flow rate (3 ~ 7 L/min), pH (3 ~ 11), electric conductivity of solution (4.16 ${\mu}S$/cm, deionized water) ~ 16.57 mS/cm (addition of NaCl 10 g/L) and initial phenol concentration (2.5 ~ 20.0 mg/L) were investigated. The observed results showed that phenol degradation was higher in the basic solution than that of the acidic. The optimum values on the 1st voltage and air flow rate for phenol degradation were 140 V and 6 L/min, respectively. It was considered that absorbance variation of $UV_{254}$ of phenol solution can be use as an indirect indicator of change of the non-biodegradable organic compounds within the treated phenol solution. Electric conductivity was not influenced the phenol degradation. To obtain the removal efficiency of phenol and COD of phenol over 97 % (initial phenol concentration, 10.0 mg/L), 80 min and 120 min were need, respectively. Phenol and COD degradation showed a pseudo-first order kinetics.