• Title/Summary/Keyword: Continuous Fiber Material

Search Result 70, Processing Time 0.021 seconds

Physical Properties of E-glass Fiber According to Fiberizing Temperature (섬유화 온도 변화에 따른 E-glass fiber의 물리적 특성)

  • Lee, Ji-Sun;Lee, MiJai;Lim, Tae-Young;Lee, Youngjin;Jeon, Dae-Woo;Hyun, Soong-Keun;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.43-47
    • /
    • 2017
  • E (Electric) -glass fibers are the most widely used glass fibers, taking up 90 % of the long glass fiber market. However, very few papers have appeared on the physical characteristics of E-glass fibers and how they depend on the fiberizing temperature of fiber spinning. Glass fiber was fabricated via continuous spinning process using bulk E-glass. In order to fabricate the E-glass specimen, raw materials were put into a Pt crucible and melted at $1550^{\circ}C$ for 2hrs; mixture was then annealed at $621{\pm}10^{\circ}C$ for 2hrs. The transmittance and adaptable temperature for spinning of the bulk marble glass were characterized using a UV-visible spectrometer and a viscometer. Continuous spinning was carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of $1175{\sim}1250^{\circ}C$, while the winder speed was fixed at 500 rpm. Subsequently we investigated the physical properties of the E-glass fiber. The average diameter of the synthesized glass fiber was measured by optical microscope. The mechanical properties of the fiber were confirmed using a UTM (universal materials testing machine); the maximum tensile strength was measured and found to be $1843{\pm}449MPa$ at $1225^{\circ}C$.

Preparation and Characterization of Inorganic Continuous Fibers from Korean Basalt and Quartz Diorite Porphyry (국내산 현무암과 맥반석으로부터 무기질 연속섬유 제조와 그 특성)

  • Kim, jae-Keun;Bae, Ji-Soo;Na, Sang-Moon;Kim, Seung-Il;Jin, Yong-Jun
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.32-37
    • /
    • 2006
  • This paper summarizes the processing inorganic continuous fibers from Korean minerals. Continuous filament fibers have been produced from two rocks, basalt and quartz diorite porphyry(QDP), by melting method. The essence of the method is that the vitrified materials was placed into the bushing, platinum/rhodium alloy crucible with a nozzle, and heated electrically to a temperature which allowed fiber spinning. Vitrified basalt without additive was suitable for producing continuous filament fiber. However doping quartz diorite porphyry with boric oxide yielded a material which could be pulled continuously.

Three-dimensional free vibration analysis of cylindrical shells with continuous grading reinforcement

  • Yas, M.H.;Garmsiri, K.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.349-360
    • /
    • 2010
  • Three dimensional free vibrations analysis of functionally graded fiber reinforced cylindrical shell is presented, using differential quadrature method (DQM). The cylindrical shell is assumed to have continuous grading of fiber volume fraction in the radial direction. Suitable displacement functions are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain natural frequencies. The main contribution of this work is presenting useful results for continuous grading of fiber reinforcement in the thickness direction of a cylindrical shell and comparison with similar discrete laminate composite ones. Results indicate that significant improvement is found in natural frequency of a functionally graded fiber reinforced cylinder due to the reduction in spatial mismatch of material properties and natural frequency.

Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations

  • Tahouneh, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.773-796
    • /
    • 2014
  • This paper deals with free vibration analysis of continuous grading fiber reinforced (CGFR) and bi-directional FG annular sector plates on two-parameter elastic foundations under various boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. Results indicate that the non-dimensional natural frequency parameter of a functionally graded fiber volume fraction is larger than that of a discrete laminated and close to that of a 2-layer. It results that the CGFR plate attains natural frequency higher than those of traditional discretely laminated composite ones and this can be a benefit when higher stiffness of the plate is the goal and that is due to the reduction in spatial mismatch of material properties. Moreover, it is shown that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional one-dimensional functionally graded material. The multidirectional graded material can likely be designed according to the actual requirement and it is a potential alternative to the unidirectional functionally graded material. The new results can be used as benchmark solutions for future researches.

Static Analysis of Continuous Fiber-Reinforced Laminated Beams Based on Hybrid-Mixed Formulation (혼합 정식화를 이용한 섬유 강화 적층보의 변형해석)

  • Kim, J.G.;Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.47-52
    • /
    • 2011
  • In this study, an accurate 2-noded hybrid-mixed element for continuous fiber-reinforced laminated beams is newly proposed. The present element including the effect of shear deformation is based on Hellinger-Reissner variational principle, and introduces additional consistent node less degrees for displacement field interpolation in order to enhance the numerical performance. The micromechanical and lamination theory are employed in the finite element description to consider the effects of the laminate stacking sequences, material orthotropy, and fiber volume fraction, etc. The element stiffness matrix can be explicitly derived through the stationary condition and static condensation using Mathematica program. Several numerical examples confirm the accuracy of the present hybrid-mixed element and also show in detail the effects of the continuous fiber volume fraction, stacking sequences and boundary condition on the bending behavior of laminated beams.

Nondestructive Evaluation in the Defects of FRP Composites By Using Terahertz Waves (테라헤르츠파를 이용한 FRP 복합재료의 비파괴결함평가)

  • Im, Kwang-Hee;Kim, Ji-Hoon;Hsu, David K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.252-258
    • /
    • 2012
  • A study of terahertz waves was made for the nondestructive evaluation of FRP (Fiber reinforced plastics) composite materials. The terahertz systems were consisted of time domain spectroscopy (TDS) and continuous wave (CW). The composite materials investigated include both non-conducting polymeric composites and conducting carbon fiber composites. Terahertz signals in the TDS mode resembles that of ultrasound; however, unlike ultrasound, a terahertz pulse was not able to detect a material with conductivity. The CFRP (Carbon fiber reinforced plastics) laminates were utilized for confirming the experimentation in the terahertz NDE. In carbon composites the penetration of terahertz waves is quite limited and the detection of flaws is strongly affected by the angle between the electric field direction of the terahertz waves and the intervening fiber directions. A refractive index (n) was defined as one of mechanical properties; so a method was obtained in order solve the "n" in the material with non-conductivity. The usefulness and limitations of terahertz radiation are investigated for the NDE of FRP composites.

An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams

  • Varshney, L.K.;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.751-763
    • /
    • 2019
  • Steel-concrete composition is widely used in the construction due to efficient utilization of materials. The service load behavior of composite structures is significantly affected by cracking, creep and shrinkage effects in concrete. In order to control these effects in concrete slab, an efficient and novel strategy has been proposed by use of fiber reinforced concrete near interior supports of a continuous beam. Numerical study is carried out for the control of cracking, creep and shrinkage effects in composite beams subjected to service load. A five span continuous composite beam has been analyzed for different lengths of fiber reinforced concrete near the interior supports. For this purpose, the hybrid analytical-numerical procedure, developed by the authors, for service load analysis of composite structures has been further improved and generalized to make it applicable for composite beams having spans with different material properties along the length. It is shown that by providing fiber reinforced concrete even in small length near the supports; there can be a significant reduction in cracking as well as in deflections. It is also observed that the benefits achieved by providing fiber reinforced concrete over entire span are not significantly more as compared to the use of fiber reinforced concrete in certain length of beam near the interior supports in continuous composite beams.

Studies on Melt Spinning of PET Hollow Fibers

  • O Tae-Hwan;Lee Mu-Seok;Kim Sang-Yong;Sim Hyeon-Ju
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.111-115
    • /
    • 1998
  • Fiber spinning is a continuous deformation process by which material is converted into a fiber. The melt spinning process was analyzed mainly by employing an asymptotic method of the so-called thin filament equations which formulates dynamics of spinning process by averaging over the cross-section of filament the set of fundamental equations. The method gives the approximate results for commonly used circular fiber spinning.(omitted)

  • PDF

Studies on the Melting Characterization of Basalt and its Continuous Fiber Spinning (현무암의 용융특성과 연속섬유 방사 연구)

  • Park, Hye-Jung;Park, Sun-Min;Lee, Jae-Won;Roh, Gwang-Chul;Kim, Jae-Keun
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.43-49
    • /
    • 2010
  • Basaltic fiber was prepared by continuous spinning process from Jeju Pyosun raw basalt materials. First, for confirming the melting characterization of basalt, basalt raw material put into Pt crucible and melted up to $1550^{\circ}C$ then quenched by dropping it into water. After quenching, the optimum fiber spinning conditions were investigated by measurement and analysis of XRD, TMA, high temperature viscosity, high temperature conductivity and high temperature microscope. The optimum spinning temperature and viscosity for preparation of continuous filament fiber were $1264^{\circ}C$ and $10^{2.8}$ poise at $1264^{\circ}C$, respectively. Properties of prepared spinning fiber were confirmed by tensile strength, FE-SEM, heat resisting test and others. The tensile strength of fiber prepared by spinning conditions of the bushing temperature $1240^{\circ}C$ and winder speed 4600rpm was 3660MPa.

Nondestructive Evaluation of the Turbine Blade of Wind Energy By Using T-Ray (T-ray를 이용한 풍력터빈 브레이드 비파괴결함평가)

  • Im, Kwang-Hee;Jeong, Jong-An;Hsu, David K.;Lee, Kil-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.102-108
    • /
    • 2012
  • A study of terahertz waves (T-ray) was made for the nondestructive evaluation of FRP (Fiber reinforced plastics) composite materials. The to-be-used systems were time domain spectroscopy (TDS) and continuous wave (CW). The composite materials investigated include both turbine blades of wind energy (non-conducting polymeric composites) and conducting carbon fiber composites. Terahertz signals in the TDS mode resembles that of ultrasound; however, unlike ultrasound, a terahertz pulse was not able to detect a material with conductivity. This was demonstrated in CFRP (Carbon fiber reinforced plastics) laminates. Refractive index (n) was defined as one of mechanical properties; so a method was solved in order solve the "n" in the material with the cut parts of the turbine blades of wind energy. The defects and anomalies investigated by terahertz radiation were foreign material inclusions and simulated disband. Especially, it is found that the T-ray went through the turbine blade with greater thickness (about 90mm).