• 제목/요약/키워드: Continuity Equation

검색결과 386건 처리시간 0.022초

유한수심 자유표면파 문제에 적용된 해밀톤원리 (Hamilton제s Principle for the Free Surface Waves of Finite Depth)

  • 김도영
    • 한국해양공학회지
    • /
    • 제10권3호
    • /
    • pp.96-104
    • /
    • 1996
  • Hamilton's principle is used to derive Euler-Lagrange equations for free surface flow problems of incompressible ideal fluid. The velocity field is chosen to satisfy the continuity equation a priori. This approach results in a hierarchial set of governing equations consist of two evolution equations with respect to two canonical variables and corresponding boundary value problems. The free surface elevation and the Lagrange's multiplier are the canonical variables in Hamilton's sense. This Lagrange's multiplier is a velocity potential defined on the free surface. Energy is conserved as a consequence of the Hamiltonian structure. These equations can be applied to waves in water of finite depth including generalization of Hamilton's equations given by Miles and Salmon.

  • PDF

해양환경공학의 다목적 시뮬레이션을 위한 수치파랑수조 기술 (Numerical Wave Tank Technology for Multipurpose Simulation in Marine Environmental Engineering)

  • 박종천
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.1-7
    • /
    • 2003
  • A virtual reality technology for multipurpose numerical simulation is developed to reproduce and investigate a variety of ocean environmental problems in a 3D Numerical Wave Tank(NWT). The governing equations for solving incompressible fluid motion are Navier-Stokes equation and continuity equation. The Marker-Density function technique is adopted to implement the fully nonlinear freesurface kinematic condition. The marine environmental situations, i.e., waves, currents, etc., are reproduced by use of multi-segmented wavemakers on the basis of the so-called ″snake-principle″. In this paper, some numerical reproduction techniques for regular, and irregular waves, multi-directional waves, Bull's-eye wave. wave-current, and solitary wave are presented, and a model test in motion with large amplitude of roll angle is conducted in the developed 3D-NWT, using a overlaid grid system.

AC PDP에서 1차원 수치해석을 통한 방전 특성 연구 (An Analysis on the Discharge Characteristics through 1-D Numerical Simulation in an AC PDP)

  • 이주희;서정현;이석현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.220-222
    • /
    • 2003
  • In this paper, we analyze on the discharge characteristics through 1-D simulations in an at plasma display panel discharge cell. The model is based on a Poisson' equation, continuity and drift-diffusion equation. Results are presented in a 95% neon, 5% xenon gas mixture, for a gap length of 100us and a gas pressure of 400Torr at ambient temperature. Results for other gap length are also discussed. As a result, an increase of the gap cause increase of luminous efficiency but with larger sustaining voltage.

  • PDF

노치 영역에서 유체 관성을 고려한 압력 평형형 베인 펌프의 압력 상승에 관한 연구 (A Study on the Pressure Rising Considered Fluid Inertia in the Notch Area of Balanced Type Vane Pump)

  • 조명래;한동철;문호지;박민호;배홍용
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제24회 추계학술대회
    • /
    • pp.168-175
    • /
    • 1996
  • This paper reports on theoretical study of the pressure overshoot in the delivery ports and pressure rising within balanced type vane pump. Pressure overshoot occur due to the accelerated fluid through the notch, so, result in pressure ripple, flow ripple, and noise. For calculating the pressure rising and fluctuations of pressure, we have modeled mathematically used continuity equation based on compressibility and momentum equation considered fluid inertia in the notch, and analyzed simultaneously. As a results of analysis, we have found oscillation of pressure and compression chamber pressure depend on the rotational speeds, bulk modulus of working fluid, notches, number of vane and camring. Using the model, notches have been shown to be important design factor in relaxing the rapid pressure rising and reducing the amplitudes of pressure overshoot.

  • PDF

WEPP 모형을 이용한 경사지 토양유실량 추정 (Estimating of Soil Loss from Hillslope Using WEPP Model)

  • 손정호;박승우;강민구
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.45-50
    • /
    • 2001
  • The purpose of this study was to estimate of soil loss form hillslope using WEPP(Water Erosion Prediction Project) model. WEPP model was developed for predicting soil erosion and deposition, fundamentally based on soil erosion prediction technology. The model for predicting sediment yields from single storms was applied to a tested watershed. Surface runoff is calculated by kinematic wave equation and infiltration is based on the Green and Ampt equation. Governing equations for sediment continuity, detachment, deposition, shear stress in rills, and transport capacity are presented. Tested watershed has an area of 0.6ha, where the runoff and sediment data were collected. The relative error between predicted and measured runoff was $-16.6{\sim}2.2%$, peak runoff was $-15.6{\sim}2.2%$ and soil loss was $-23.9{\sim}356.5%$.

  • PDF

상수관망의 수리학적 지배인자 결정기법 (Determination Algorithm of Hydraulic Parameters in Water Distribution System)

  • 박재홍;김상현;한건연
    • 물과 미래
    • /
    • 제29권6호
    • /
    • pp.217-224
    • /
    • 1996
  • 본 연구에서는 관망 시스템에서의 관경, 관경 및 전체유속, 유량 및 전체조도계수를 주어진 지점의 압력과 유량값을 이용하여 산정하는 기법을 개발하였다. 선택된 관망의 수리학적 인자들은 연속방정식과 에너지방정식을 재구성함으로써 결정될 수 있었다. 계수메트릭스를 해석하기 위하여 부가적인 에너지방정식이 사용되었다. 복잡한 관로 시스템에 대해 본 연구모형들이 적용되었다. 본 모형의 검증을 위해 계산결과를 KYPIPE2 모형에 역대입한 결과는 서로 잘 일치하고 있는 것으로 나타났다.

  • PDF

기판 위에 분포된 발열블록 주위의 3차원 혼합대류 열전달 해석 (Analysis of Three-Dimensional Mixed Convection Flow About Uniformly Distributed Heat-Generating Blocks on a Conductive Wall)

  • 윤병택;최동형
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.1-11
    • /
    • 1999
  • The three-dimensional laminar mixed convection flow between the conductive printed circuit boards. on which the heat generating rectangular blocks are uniformly distributed, has been examined in the present study. The flow and heat-transfer characteristics are assumed to be pseudo periodic in the streamwise direction and symmetric in the cross-stream direction. Using an algorithm of SIMPLER, the continuity equation. the Navier-Stokes equations and the energy equation are solved numerically in the three-dimensional domain Inside the channel. The convective derivative terms are discretized by the QUICK scheme to accurately capture the flow field. The flow and the heat transfer characteristics are thoroughly examined for various Re and Gr.

스위칭 제어 모드를 이용한 유압펌프의 유량/압력/동력 제어 (Flow/Pressure/Power Control of Hydraulic Pump Utilizing Switching Control Mode)

  • 정동수;김형의
    • 유공압시스템학회논문집
    • /
    • 제4권4호
    • /
    • pp.8-14
    • /
    • 2007
  • The electro-hydraulic pump is usually used in testing equipments which require one control function. But until now, it is not applied to industrial equipments which are exposed to severe working environment and require various control functions. This paper proposes a technique which controls continuously flow, pressure and power by utilizing switching control mode. Mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.

  • PDF

노즐용삭을 고려한 SF6 가스차단기 노즐의 열적회복특성 해석 (Analysis of Thermal Recovery Characteristics for Nozzle of SF6 GCB Considering Nozzle Ablation)

  • 이병윤;송기동;정진교;박경엽
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권2호
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, a method for analyzing the thermal recovery characteristics of the nozzle of gas circuit breaker was described. In order to obtain thermal recovery characteristics, the transient simulation of SF6 arc plasma within the nozzle was carried out. In particular, the nozzle ablation was taken into account by simultaneously solving the PTFE concentration equation with the governing equations such as continuity, momentum and energy equation. After that, post arc current calculation was performed with the rate of rise of recovery voltage changed. From the calculated post arc current, it was possible to suggest the thermal recovery characteristics of the nozzle of gas circuit breaker.

디지털 파랑 수조 내에서의 비선형 파랑 운동의 수치시뮬레이션 (NUMERICAL SIMULATIONS OF FULLY NONLINEAR WAVE MOTIONS IN A DIGITAL WAVE TANK)

  • 박종천;김경성
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.90-100
    • /
    • 2006
  • A digital wave tank (DWT) simulation technique has been developed by authors to investigate the interactions of fully nonlinear waves with 3D marine structures. A finite-difference/volume method and a modified marker-and-cell (MAC) algorithm have been used, which are based on the Navier-Stokes (NS) and continuity equations. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique or the Level-Set (LS) technique developed for one or two fluid layers. In this paper, some applications for various engineering problems with free-surface are introduced and discussed. It includes numerical simulation of marine environments by simulation equipments, fully nonlinear wave motions around offshore structures, nonlinear ship waves, ship motions in waves and marine flow simulation with free-surface. From the presented simulations, it seems that the developed DWT simulation technique can handle various engineering problems with free-surface and reliably predict hydrodynamic features due to the fully-nonlinear wave motions interacting with such marine structures.