Recently ubiquitous application services are developed plentifully using RFID techniques in the field of distribution and security industries. However, except these field the applications using RFID are not mature yet. In this study, we proposed a real-time context service model of the u-conference based on the real-time contextual information acquired from conference and exposition. With collection of real-time contextual information for u-conference, the model can provide a lot of information services on the state of session attendee, doorway control, affairs, user certification, presentation progress etc. For the verification of proposed real-time context service model of u-conference, we design and implement the conference progress state service included the state of session attendee, user certification and presentation progress etc. This service provides the presentation state information included the current presenter, the paper list, the number of session attendee, the schedule and place of each session using the collecting RFID tag and the related information.
일화기억은 핵심 이벤트와 그에 연합된 맥락으로 구성된다. 해마와 해마 주변 영역이 일화기억의 부호화에서 맥락을 표상하는 역할에 관해 연구되어왔지만, 시공간적 맥락 외에 다양한 맥락-특이적 정보들에 대한 표상에 관한 연구는 많지 않다. 본 연구에서는 고해상도 자기기능공명기법을 이용하여 여러 맥락정보(예, 육하원칙 - 누가, 왜, 무엇을 언제, 어디서, 어떻게)의 부호화에 관여하는 내측두엽 및 대뇌피질 신경연결성의 특징을 탐색하였다. 참가자들은 두 명의 얼굴과 하나의 사물로 구성된 실험 이벤트를 보면서 여섯가지 맥락 부호화 과제를 수행하였다. 휴지기 기능적 자기공명영상 정보를 활용해 내측두엽의 세부 영역을 기능적으로 구분하였고 맥락 기억 과제별 기능적 신경연결성 네트워크를 탐색하였다. 일반선형화 모델 분석을 통해 시공간적 맥락정보를 처리할 때보다 사회적, 행동적, 의도 맥락을 연합할 때 내측두엽의 세부영역, 전전두엽, 하부두정엽 영역이 유의미하게 증가한 활성화를 보이며 관여함을 확인하였다. 나아가 이 영역들과 내측두엽 영역이 맥락조건간 차이에 관여하는 기능적 연결성 특징을 탐색하기 위하여 맥락부호화 과제를 수행하는 동안의 해마세부영역들과 전전두엽, 하부두정엽 등 간의 과제기반 기능적 연결성 정보들을 다변량 패턴분석의 주요입력변수로 선정하였고, 기계학습을 통해 맥락 조건 간 연결성 패턴분류를 시도하였다. 네트워크 패턴분류에서도 시공간 맥락 조건과 각 사회적, 행동적, 의도 맥락처리 조건 간에는 기능적 연결성의 차이가 두드러졌다. 본 연구결과를 통해 일화기억에서 특정 맥락을 처리하는 신경학적 기제의 특성과 맥락 조건 간 차이를 제시하였다.
In this paper, we propose a multi-label classification method in which multi-label classification estimation techniques are applied to resolving location prediction problem. Most of previous studies related to location prediction have focused on the use of single-label classification by using contextual information such as user's movement paths, demographic information, etc. However, in this paper, we focused on the case where users are free to visit multiple locations, forcing decision-makers to use multi-labeled dataset. By using 2373 contextual dataset which was compiled from college students, we have obtained the best results with classifiers such as bagging, random subspace, and decision tree with the multi-label classification estimation methods like binary relevance(BR), binary pairwise classification (PW).
Location prediction has been successfully utilized to provide high quality of location-based services to customers in many applications. In its usual form, the conventional type of location prediction is to predict future locations based on user's past movement history. However, as location prediction needs are expanded into much complicated cases, it becomes necessary quite frequently to make inference on the locations that target user visited in the past. Typical cases include the identification of locations that infectious disease carriers may have visited before, and crime suspects may have dropped by on a certain day at a specific time-band. Therefore, primary goal of this study is to predict locations that users visited in the past. Information used for this purpose include user's demographic information and movement histories. Data mining classifiers such as Bayesian network, neural network, support vector machine, decision tree were adopted to analyze 6868 contextual dataset and compare classifiers' performance. Results show that general Bayesian network is the most robust classifier.
본 논문에서는 다양한 시각적 정보와 일정한 관련 정보를 통합하여 인간의 피로도를 추론하기 위하여 베이지안 네트워크를 기반으로 한 확률 모델을 제안하고자 한다. 먼저 눈꺼풀의 움직임, 시선, 머리의 움직임, 그리고 얼굴 표정 같은 개인의 상태를 특성 지을 수 있는 시각적 매개변수를 측정하였다. 그러나 각각의 시각적 정보와 일정한 관련 정보만으로 인간의 피로도를 결정하기에는 충분하지 않으므로, 본 논문에서는 인간의 피로도를 모니터링 하기 위하여 가능한 많은 관련 정보와 시각 정보를 융합하여 베이지안 네트워크 모델을 개발하였다. 실험 결과, 피로 예측과 모델링을 위해 제안된 베이지안 네트워크의 유용함을 확인 할 수 있었다.
본 연구에서는 문서 분류기의 정확도를 높이기 위해 문맥 정보와 키워드 정보를 모두 사용하는 이중 접근(Dual Approach) 방법론을 제안한다. 우선 문맥 정보는 다양한 자연어 이해 작업(Task)에서 뛰어난 성능을 나타내고 있는 사전학습언어모델인 Google의 BERT를 사용하여 추출한다. 구체적으로 한국어 말뭉치를 사전학습한 KoBERT를 사용하여 문맥 정보를 CLS 토큰 형태로 추출한다. 다음으로 키워드 정보는 문서별 키워드 집합을 Autoencoder의 잠재 벡터를 통해 하나의 벡터 값으로 생성하여 사용한다. 제안 방법을 국가과학기술정보서비스(NTIS)의 국가 R&D 과제 문서 중 보건 의료에 해당하는 40,130건의 문서에 적용하여 실험을 수행한 결과, 제안 방법이 문서 정보 또는 단어 정보만을 활용하여 문서 분류를 진행하는 기존 방법들에 비해 정확도 측면에서 우수한 성능을 나타냄을 확인하였다.
스마트폰 애플리케이션(스마트폰 앱) 시장이 급속히 성장하고 있다. 본 연구는 스마트폰 앱에 대한 사용의도와 충성도의 변수인 정보품질(상호작용, 내용, 정황성)에 개인적인 태도(혁신성, 친숙성)가 미치는 영향을 실증적으로 평가하였다. 연구 결과 혁신성, 콘텐츠품질, 정황성품질은 사용의도에 긍정적인 영향을 주는 것으로 나타났다. 반면에 친숙성과 상호작용품질은 사용의도에 긍정적인 영향을 주지 않는 것으로 나타났다. 그리고 사용의도 역시 충성도에 긍정적인 영향을 주지 않는 것으로 나타났다.
Ubiquitous computing is enhancing computer use by making many computers available throughout the physical environment, but making them effectively invisible to the user. To facilitate the successful adoption and diffusion of ubiquitous computing, it is necessary to figure out the factors affecting the use of U-service. Though the research related to ubiquitous computing has been vigorously conducted from the aspect of system and service provider, there have been very few studies that focus on the user's perspective. Therefore, this study attempts to figure out major factors which are dedicated to the development of ubiquitous computing and u-service, and that ultimately influence the u-business outcome. This study derived the factors that characterize u-service, such as ubiquity, contextual offer, reliability, invisibility, and confidentiality, which are then combined in the TAM model and carry out the path analysis. The research findings indicate that ubiquity affects both the perceived usefulness and perceived ease of use. The reliability and confidentiality were found to affect the perceived usefulness, whereas the contextual offer and invisibility turned out to influence the perceived ease of use. Finally, the relationship among the perceived usefulness, perceived ease of use, and the attitude toward using are identical with the previous research findings related to the technology acceptance model(TAM).
The main problem in speech recognition is the enormous variability in acoustic signals due to complex but predictable contextual effects. Especially in plosive consonants it is very difficult to find invariant cue due to various contextual effects, but humans use these contextual effects as helpful information in plosive consonant recognition. In this paper we experimented on three artificial neural net models for the recognition of plosive consonants. Neural Net Model I used "Multi-layer Perceptron ". Model II used a variation of the "Self-organizing Feature Map Model". And Model III used "Interactive and Competitive Model" to experiment contextual effects. The recognition experiment was performed on 9 Korean plosive consonants. We used VCV speech chains for the experiment on contextual effects. The speech chain consists of Korean plosive consonants /g, d, b, K, T, P, k, t, p/ (/ㄱ, ㄷ, ㅂ, ㄲ, ㄸ, ㅃ, ㅋ, ㅌ, ㅍ/) and eight Korean monothongs. The inputs to Neural Net Models were several temporal cues - duration of the silence, transition and vot -, and the extent of the VC formant transitions to the presence of voicing energy during closure, burst intensity, presence of asperation, amount of low frequency energy present at voicing onset, and CV formant transition extent from the acoustic signals. Model I showed about 55 - 67 %, Model II showed about 60%, and Model III showed about 67% recognition rate.
There are various machine learning techniques such as Reinforcement Learning, Deep Learning, Neural Network Learning, and so on. In recent, Large Language Models (LLMs) are popularly used for Generative AI based on Reinforcement Learning. It makes decisions with the most optimal rewards through the fine tuning process in a particular situation. Unfortunately, LLMs can not provide any explanation for how they reach the goal because the training is based on learning of black-box AI. Reinforcement Learning as black-box AI is based on graph-evolving structure for deriving enhanced solution through adjustment by human feedback or reinforced data. In this research, for mutually exclusive decision-making, Mutually Exclusive Learning (MEL) is proposed to provide explanations of the chosen goals that are achieved by a decision on both ends with specified conditions. In MEL, decision-making process is based on the tree-based structure that can provide processes of pruning branches that are used as explanations of how to achieve the goals. The goal can be reached by trade-off among mutually exclusive alternatives according to the specific contextual conditions. Therefore, the tree-based structure is adopted to provide feasible solutions with the explanations based on the pruning branches. The sequence of pruning processes can be used to provide the explanations of the inferences and ways to reach the goals, as Explainable AI (XAI). The learning process is based on the pruning branches according to the multi-dimensional contextual conditions. To deep-dive the search, they are composed of time window to determine the temporal perspective, depth of phases for lookahead and decision criteria to prune branches. The goal depends on the policy of the pruning branches, which can be dynamically changed by configured situation with the specific multi-dimensional contextual conditions at a particular moment. The explanation is represented by the chosen episode among the decision alternatives according to configured situations. In this research, MEL adopts the tree-based learning model to provide explanation for the goal derived with specific conditions. Therefore, as an example of mutually exclusive problems, employment process is proposed to demonstrate the decision-making process of how to reach the goal and explanation by the pruning branches. Finally, further study is discussed to verify the effectiveness of MEL with experiments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.