• Title/Summary/Keyword: Context-dependent Model

Search Result 129, Processing Time 0.017 seconds

Context-Dependent Classification of Multi-Echo MRI Using Bayes Compound Decision Model (Bayes의 복합 의사결정모델을 이용한 다중에코 자기공명영상의 context-dependent 분류)

  • 전준철;권수일
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.179-187
    • /
    • 1999
  • Purpose : This paper introduces a computationally inexpensive context-dependent classification of multi-echo MRI with Bayes compound decision model. In order to produce accurate region segmentation especially in homogeneous area and along boundaries of the regions, we propose a classification method that uses contextual information of local enighborhood system in the image. Material and Methods : The performance of the context free classifier over a statistically heterogeneous image can be improved if the local stationary regions in the image are disassociated from each other through the mechanism of the interaction parameters defined at he local neighborhood level. In order to improve the classification accuracy, we use the contextual information which resolves ambiguities in the class assignment of a pattern based on the labels of the neighboring patterns in classifying the image. Since the data immediately surrounding a given pixel is intimately associated with this given pixel., then if the true nature of the surrounding pixel is known this can be used to extract the true nature of the given pixel. The proposed context-dependent compound decision model uses the compound Bayes decision rule with the contextual information. As for the contextual information in the model, the directional transition probabilities estimated from the local neighborhood system are used for the interaction parameters. Results : The context-dependent classification paradigm with compound Bayesian model for multi-echo MR images is developed. Compared to context free classification which does not consider contextual information, context-dependent classifier show improved classification results especially in homogeneous and along boundaries of regions since contextual information is used during the classification. Conclusion : We introduce a new paradigm to classify multi-echo MRI using clustering analysis and Bayesian compound decision model to improve the classification results.

  • PDF

A Study on Korean 4-connected Digit Recognition Using Demi-syllable Context-dependent Models (반음절 문맥종속 모델을 이용한 한국어 4 연숫자음 인식에 관한 연구)

  • 이기영;최성호;이호영;배명진
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.175-181
    • /
    • 2003
  • Because a word of Korean digits is a syllable and deeply coarticulatied in connected digits, some recognition models based on demisyllables have been proposed by researchers. However, they could not show an excellent recognition results yet. This paper proposes a recognition model based on extended and context-dependent demisyllables, such as a tri-demisyllable like a tri-phone, for the Korean 4-connected digits recognition. For experiments, we use a toolkit of HTK 3.0 for building this model of continuous HMMs using training Korean connected digits from SiTEC database and for recognizing unknown ones. The results show that the recognition rate is 92% and this model has an ability to improve the recognition performance of Korean connected digits.

Efficient context dependent process modeling using state tying and decision tree-based method (상태 공유와 결정트리 방법을 이용한 효율적인 문맥 종속 프로세스 모델링)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.369-377
    • /
    • 2010
  • In vocabulary recognition systems based on HMM(Hidden Markov Model)s, training process unseen model bring on show a low recognition rate. If recognition vocabulary modify and make an addition then recreated modeling of executed database collected and training sequence on account of bring on additional expenses and take more time. This study suggest efficient context dependent process modeling method using decision tree-based state tying. On study suggest method is reduce recreated of model and it's offered that robustness and accuracy of context dependent acoustic modeling. Also reduce amount of model and offered training process unseen model as concerns context dependent a likely phoneme model has been used unseen model solve the matter. System performance as a result of represent vocabulary dependence recognition rate of 98.01%, vocabulary independence recognition rate of 97.38%.

Phonetic Tied-Mixture Syllable Model for Efficient Decoding in Korean ASR (효율적 한국어 음성 인식을 위한 PTM 음절 모델)

  • Kim Bong-Wan;Lee Yong-Jn
    • MALSORI
    • /
    • no.50
    • /
    • pp.139-150
    • /
    • 2004
  • A Phonetic Tied-Mixture (PTM) model has been proposed as a way of efficient decoding in large vocabulary continuous speech recognition systems (LVCSR). It has been reported that PTM model shows better performance in decoding than triphones by sharing a set of mixture components among states of the same topological location[5]. In this paper we propose a Phonetic Tied-Mixture Syllable (PTMS) model which extends PTM technique up to syllables. The proposed PTMS model shows 13% enhancement in decoding speed than PTM. In spite of difference in context dependent modeling (PTM : cross-word context dependent modeling, PTMS : word-internal left-phone dependent modeling), the proposed model shows just less than 1% degradation in word accuracy than PTM with the same beam width. With a different beam width, it shows better word accuracy than in PTM at the same or higher speed.

  • PDF

Multi -Criteria ABC Inventory Classification Using Context-Dependent DEA (컨텍스트 의존 DEA를 활용한 다기준 ABC 재고 분류 방법)

  • Park, Jae-Hun;Lim, Sung-Mook;Bae, Hye-Rim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.69-78
    • /
    • 2010
  • Multi-criteria ABC inventory classification is one of the most widely employed techniques for efficient inventory control, and it considers more than one criterion for categorizing inventory items into groups of different importance. Recently, Ramanathan (2006) proposed a weighted linear optimization (WLO) model for the problem of multi-criteria ABC inventory classification. The WLO model generates a set of criteria weights for each item and assigns a normalized score to each item for ABC analysis. Although the WLO model is considered to have many advantages, it has a limitation that many items can share the same optimal efficiency score. This limitation can hinder a precise classification of inventory items. To overcome this deficiency, we propose a context-dependent DEA based method for multi-criteria ABC inventory classification problems. In the proposed model, items are first stratified into several efficiency levels, and then the relative attractiveness of each item is measured with respect to less efficient ones. Based on this attractiveness measure, items can be further discriminated in terms of their importance. By a comparative study between the proposed model and the WLO model, we argue that the proposed model can provide a more reasonable and accurate classification of inventory items.

A Study on the Categorization of Context-dependent Phoneme using Decision Tree Modeling (결정 트리 모델링에 의한 한국어 문맥 종속 음소 분류 연구)

  • 이선정
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.2
    • /
    • pp.195-202
    • /
    • 2001
  • In this paper, we show a study on how to model a phoneme of which acoustic feature is changed according to both left-hand and right-hand phonemes. For this purpose, we make a comparative study on two kinds of algorithms; a unit reduction algorithm and decision tree modeling. The unit reduction algorithm uses only statistical information while the decision tree modeling uses statistical information and Korean acoustical information simultaneously. Especially, we focus on how to model context-dependent phonemes based on decision tree modeling. Finally, we show the recognition rate when context-dependent phonemes are obtained by the decision tree modeling.

  • PDF

Fiber-reinforced micropolar thermoelastic rotating Solid with voids and two-temperature in the context of memory-dependent derivative

  • Alharbi, Amnah M.;Said, Samia M.;Abd-Elaziz, Elsayed M.;Othman, Mohamed I.A.
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.347-358
    • /
    • 2022
  • The main concern of this article is to discuss the problem of a two-temperature fiber-reinforced micropolar thermoelastic medium with voids under the effect rotation, mechanical force in the context four different theories with memory-dependent derivative (MDD) and variable thermal conductivity. The three-phase-lag model (3PHL), dual-phase-lag model (DPL), Green-Naghdi theory (G-N II, G-N III), coupled theory, and the Lord-Shulman theory (L-S) are employed to solve the present problem. Analytical expressions of the physical quantities are obtained by using Laplace-Fourier transforms technique. Numerical results are shown graphically and the results obtained are analyzed. The most significant points are highlighted.

A Study on the Context-dependent Speaker Recognition Adopting the Method of Weighting the Frame-based Likelihood Using SNR (SNR을 이용한 프레임별 유사도 가중방법을 적용한 문맥종속 화자인식에 관한 연구)

  • Choi, Hong-Sub
    • MALSORI
    • /
    • no.61
    • /
    • pp.113-123
    • /
    • 2007
  • The environmental differences between training and testing mode are generally considered to be the critical factor for the performance degradation in speaker recognition systems. Especially, general speaker recognition systems try to get as clean speech as possible to train the speaker model, but it's not true in real testing phase due to environmental and channel noise. So in this paper, the new method of weighting the frame-based likelihood according to frame SNR is proposed in order to cope with that problem. That is to make use of the deep correlation between speech SNR and speaker discrimination rate. To verify the usefulness of this proposed method, it is applied to the context dependent speaker identification system. And the experimental results with the cellular phone speech DB which is designed by ETRI for Koran speaker recognition show that the proposed method is effective and increase the identification accuracy by 11% at maximum.

  • PDF

Estimation of the time-dependent AUC for cure rate model with covariate dependent censoring

  • Yang-Jin Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.4
    • /
    • pp.365-375
    • /
    • 2024
  • Diverse methods to evaluate the prediction model of a time to event have been proposed in the context of right censored data where all subjects are subject to be susceptible. A time-dependent AUC (area under curve) measures the predictive ability of a marker based on case group and control one which are varying over time. When a substantial portion of subjects are event-free, a population consists of a susceptible group and a cured one. An uncertain curability of censored subjects makes it difficult to define both case group and control one. In this paper, our goal is to propose a time-dependent AUC for a cure rate model when a censoring distribution is related with covariates. A class of inverse probability of censoring weighted (IPCW) AUC estimators is proposed to adjust the possible sampling bias. We evaluate the finite sample performance of the suggested methods with diverse simulation schemes and the application to the melanoma dataset is presented to compare with other methods.

A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach

  • Samia M. Said
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.137-144
    • /
    • 2023
  • The current article studied wave propagation in a nonlocal porous thermoelastic half-space with temperature-dependent properties. The problem is solved in the context of the Green-Lindsay theory (G-L) and the Lord- Shulman theory (L-S) based on thermoelasticity with memory-dependent derivatives. The governing equations of the porous thermoelastic solid are solved using normal mode analysis with an eigenvalue approach. In order to illustrate the analytical developments, the numerical solution is carried out, and the effect of local parameter and temperature-dependent properties on the physical fields are presented graphically.