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Abstract
Diverse methods to evaluate the prediction model of a time to event have been proposed in the context of

right censored data where all subjects are subject to be susceptible. A time-dependent AUC (area under curve)
measures the predictive ability of a marker based on case group and control one which are varying over time.
When a substantial portion of subjects are event-free, a population consists of a susceptible group and a cured
one. An uncertain curability of censored subjects makes it difficult to define both case group and control one. In
this paper, our goal is to propose a time-dependent AUC for a cure rate model when a censoring distribution is
related with covariates. A class of inverse probability of censoring weighted (IPCW) AUC estimators is proposed
to adjust the possible sampling bias. We evaluate the finite sample performance of the suggested methods with
diverse simulation schemes and the application to the melanoma dataset is presented to compare with other
methods.

Keywords: cure rate model, discrimination, IPCW, mixture model, prediction accuracy, time-
dependent ROC

1. Introduction

In prognostic studies, it happens a substantial portion of patients can be event-free, which is denoted
as a cured group or a risk-free group. For evaluating the effect of covariates both on the cure rate
and on the failure time of susceptible (uncured) patients, several models have been proposed. Among
them, the mixture model is expressed of a logistic model for the cure rate and a proportional hazard
regression model for susceptible patients (Kuk and Chen, 1992; Maller and Zhou, 1996). In the
context of a cure rate model, two issues related with a predictive accuracy have been considered. The
first one is to predict who is cured and the second is to predict the survival probabilities of uncured
subjects based on the markers. Both issues can be dealt by extending the classical discriminative
accuracy measures such as the ROC curve and C-index.

The ROC curve has been the most frequently applied measure by providing both a graph and an
AUC value. There are two probabilities to construct the curve; a sensitivity is defined as the probability
of having a higher marker value among a case group (true positive rate; TPR) and a specificity is
defined as the probability of having a lower marker value among a control one (true negative rate;
TNR), respectively. These probabilities have been changed according to the threshold value of a
marker and are displayed as the ROC curve where plots sensitivity against one minus specificity over
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all possible thresholds. The predictive performance of a marker can be evaluated with the AUC (area
under curve) where a higher AUC value indicates a better performance.

For survival data, the time to event as the response variable has been observed during follow-up
and changed over time which results in a time-dependent AUC denoted by AUC(t). Suppose that
M denotes the continuous marker to evaluate the predictive accuracy where the marker can be a risk
factor, a combination of several risk factors or a risk score derived from working prediction models.
Without the loss of generality, a higher value of M is assumed to indicate a higher chance of experienc-
ing the event and of bringing an early event time. Heagerty and Zhang (2005) proposed several types
of time dependent sensitivity, specificity and the corresponding time-dependent ROC curves. Among
them, we consider a cumulative sensitivity S eC(c, t) and a dynamic specificity S pD(c, t) defined as
follows,

S eC(t, c) = Pr (M > c | T ≤ t) (1.1)

S pD(t, c) = Pr (M ≤ c | T > t) , (1.2)

the corresponding ROC curve is given by ROCC/D(t) = S eC[(1 − S pD(p, t))−1, t], p ∈ [0, 1] and the
resulting AUCC/D(t) is defined as

AUCC/D(t) = Pr
(
Mi > M j | Ti ≤ t,T j > t

)
, i , j,

which is interpreted as the probability that for two randomly chosen subjects, one experiencing the
event prior to t has the greater marker value compared to the other one free from the event at t. This
definition is more relevant in clinical studies to discriminate between subjects experiencing the event
and those event-free prior to the specific time (Pepe, 2003; Kamarudin et al., 2017).

For a cure rate model, most estimators of the AUC have been focused on the cure probability
of a prediction model. Asano et al. (2014) proposed two estimators of AUC by incorporating the
full imputation and the mean score imputation for unknown cure status as the extension of Alonzo
and Pepe (2005)’s method and Asano and Hirakawa (2017) also suggested the C-index with different
weights for three groups (cure, uncured and censored subjects). Recently, several time-dependent
AUC estimators have been proposed for evaluating a survival probability of susceptible group. Beyene
et al. (2019) applied a nonparametric estimator of AUC proposed by Li et al. (2018) to cure model and
Wang and Wang (2020) considered to implement a smoothing technique into the conditional survival
functions of two main cure rate models such as mixture model and bounded cumulative hazard model
(Yakovlev et al., 1993).

In this study, our interest is to suggest the time-dependent AUC estimator based on the inverse
probability censoring weight (IPCW) technique, when a censoring is related with a covariate. The
rest of this article is organized as follows. In Section 2, we introduce the notations and propose three
types of time-dependent AUCs. In Section 3, the finite sample performance of suggested methods is
evaluated through simulation studies. Application of the suggested methods to a melanoma dataset is
presented in Section 4 and several discussions are given in Section 5.

2. Time-dependent AUC using IPCW

In the context of survival data, the time to event is not always observed due to the censoring related
with diverse observation schemes. Furthermore, in the presence of nonsusceptible (cured) patients,
the time to event is denoted as T = UT ∗+(1−U)∞,where U is an indicator that equals 1 if the subject
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is susceptible (not cured) and 0 if cured (insusceptible) and T ∗ denotes an event time of a susceptible
subject. Given a covariate vector Z, let π(Z) = Pr(U = 1|Z) be a susceptible probability modeled with
Z. Let C denote a random censoring time with a survival function G(c) = Pr(C ≥ c) and the censoring
time is assumed to be independent of T ∗ conditional on the covariate vector Z. Then observable data
is denoted as (T̃ , δ,Z), where T̃ = min(T,C) and δ = I(T < C). When δ = 1, the individual has
experienced an event, thus U = 1. When δ = 0, however, the information of U is missing. Therefore,
a population survival function S (t|Z) is expressed as

S (t | Z) = π(Z)S̃ (t | Z,U = 1) + 1 − π(Z), (2.1)

where S̃ (t|Z,U = 1) denotes the conditional survival function of a susceptible group. As t → ∞,
S̃ (∞|Z,U = 1) = 0, but S (∞|Z) = 1 − π(Z). Therefore, ignoring a cure fraction would result in the
biased inference of the survival function.
For modelling the susceptible rate of a subject i, a logistic regression model is implemented for esti-
mating the effect of the covariate vector Xi = (1,Zi)

πi = Pr (Ui = 1 | Xi) =
exp(X

′

iγ)
1 + exp(X′iγ)

. (2.2)

Under a PH model assumption, the conditional hazard model of a susceptible group is written as

λ (t | Zi,Ui = 1) = λ0(t)exp
(
Z
′

iβ
)
, (2.3)

then S̃ i(t|Zi,Ui = 1) = exp(−Λ(t|Zi,Ui = 1)) = exp(−Λ0(t)eZ
′

i β). For estimating θ = (γ, β, λ0), the EM
algorithm is implemented to recover the unknown event status in a mixture model (Lam et al., 2008;
Sy and Taylor, 2000; Kim and Jhun, 2008).

For evaluating the prediction model of a cure rate data, a risk score Mi = Z
′

i β̂ is utilized as a
marker. To reflect the susceptibility of a censored subject on cumulative sensitivity and dynamic
specificity in (1.1) and (1.2), several methods have been proposed.
Beyene et al. (2019) considered a missing status of a censored subject T̃i and implemented the prob-
ability of experiencing an event until t > T̃i when a subject i is censored at T̃i which is expressed
as

Bi(t) = 1 − P
(
T > t | T > T̃i

)
, t > T̃i,

is estimated

B̂i(t) = δiI
(
T̃i ≤ t

)
+ (1 − δi)

(
1 −

Ŝ (t | Zi)
Ŝ (T̃i | Zi)

)
I
(
T̃i ≤ t

)
,

where the survival function Ŝ (t|Z) = π̂(Z) ˆ̃S (t|Z,U = 1) + (1 − π̂(Z)) is estimated from the cure rate
model (2.1). Then a time-dependent cumulative sensitivity, dynamic specificity and corresponding
AUCB(t) are estimated as follows,

S eB(c, t) =

∑n
i=1 I(Mi > c)B̂i(t)∑n

i=1 B̂i(t)
, S pB(c, t) =

∑n
i=1 I(Mi ≤ c)(1 − B̂i(t))∑n

i=1(1 − B̂i(t))
, (2.4)
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AUCB(t) =

∑n
i=1

∑n
j=1 B̂i(t)(1 − B̂ j(t))Mi j∑n

i=1
∑n

j=1 B̂i(t)(1 − B̂ j(t))
, Mi j = I

(
Mi > M j

)
. (2.5)

For a same problem, Wang and Wang (2020) directly implemented the estimated survival function as
follows,

S eW (c, t) =

∑n
i=1 I(Mi > c)(1 − Ŝ i(t | Zi))∑n

i=1(1 − Ŝ i(t | Zi))
, S pW (c, t) =

∑n
i=1 I(Mi ≤ c)Ŝ i(t | Zi)∑n

i=1 Ŝ i(t | Zi)
,

AUCW (t) =

∑n
i=1

∑n
j=1(1 − Ŝ i(t | Zi))Ŝ j(t | Z j)Mi j∑n

i=1
∑n

j=1(1 − Ŝ i(t | Zi))Ŝ j(t | Z j)
, (2.6)

where they applied a smoothing technique to obtain AUCW (t).
In general survival data, a right censoring causes a biased sampling when a censoring distribution

is related with a certain subpopulation which is sometimes modelled with a vector of covariates.
Inverse probability of censoring weighting (IPCW) technique has been originally proposed to adjust
for dependent censoring (Robins, 1993; Robins and Finkelstein, 2000). Under a competing risk data,
it has been adopted to reflect the effect of the subpopulation with competing event (Fine and Gray,
1999) and also applied to the discriminative measures such as C-index (Uno et al., 2011) and AUC(t)
(Blanche et al., 2013).

In this paper, we propose a class of IPCW estimators of time-dependent AUC(t) when a censoring
distribution is related with covariates. Set Wi(T̃i) = 1/Ĝ(T̃i), where Ĝ denotes the estimated cen-
soring survival function obtained from either a Kaplan-Meier estimator or regression models given a
covariate vector Zi.

The first estimator is to incorporate IPCW into Beyene’s method (2.4) and (2.5) as follows,

S eBW (c, t) =

∑n
i=1 I(Mi > c)B̂i(t)Ŵi(Ti)∑n

i=1 B̂i(t)Ŵi(T̃i)
,

S pBW (c, t) =

∑n
i=1 I(Mi ≤ c)(1 − B̂i(t))Ŵi(t)∑n

i=1(1 − B̂i(t))Ŵi(t)
,

AUCBW (t) =

∑n
i=1

∑n
j=1 B̂i(t)(1 − B̂ j(t))Mi jŴi(T̃i)Ŵ j(t)∑n

i=1
∑n

j=1 B̂i(t)(1 − B̂ j(t))Ŵi(T̃i)Ŵ j(t)
. (2.7)

Blanche et al. (2013) proposed the IPCW estimators of ROC(t) under competing risk data and
explained the role of weights on both case and two types of control. As the second estimator, we
extend their idea to a cure rate model. For the cumulative sensitivity (1.1), the IPCW is incorporated
into the case group who has experienced the event until t.

S eCW (c, t) =

∑n
i=1 I(Mi > c)I(T̃i ≤ t, δi = 1)Wi(T̃i)∑n

i=1 I(T̃i ≤ t, δi = 1)Wi(T̃i)
.
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Table 1: Bias(sd) of AUC(t) at C ∼ exp(θc), θc = 0.5

(Cure, Cen) n t AUCUno AUCB AUCW AUCBW AUCCW,1 AUCCW,2

(0.15, 0.35)

200
t(0.15)

0.0001 0.0001 0.0001 0.0001 0.020 0.0001
(0.053) (0.052) (0.028) (0.052) (0.057) (0.053)

t(0.30)
0.001 0.001 0.003 0.002 0.035 0.001

(0.041) (0.040) (0.029) (0.040) (0.046) (0.041)

400
t(0.15)

0.0001 0.0001 0.0002 0.0001 0.031 0.0001
(0.037) (0.036) (0.022) (0.036) (0.040) (0.037)

t(0.30)
0.002 0.001 0.001 0.001 0.032 0.002

(0.028) (0.028) (0.022) (0.027) (0.032) (0.028)

(0.30, 0.55)

200
t(0.15)

0.001 0.001 0.0031 0.001 0.0581 0.0001
(0.050) (0.052) (0.037) (0.052) (0.059) (0.053)

t(0.30)
0.001 0.001 0.003 0.002 0.071 0.000

(0.040) (0.043) (0.038) (0.043) (0.047) (0.045)

400
t(0.15)

0.001 0.0001 0.001 0.0001 0.054 0.001
(0.038) (0.037) (0.022) (0.037) (0.044) (0.038)

t(0.30)
0.002 0.0001 0.0001 0.0001 0.0617 0.001

(0.032) (0.032) (0.021) (0.032) (0.040) (0.029)

(0.50, 0.70)

200
t(0.15)

0.008 0.011 0.017 0.011 0.112 0.010
(0.049) (0.057) (0.048) (0.058) (0.062) (0.058)

t(0.30)
0.005 0.003 0.000 0.000 0.097 0.002

(0.038) (0.055) (0.052) (0.055) (0.049) (0.056)

400
t(0.15)

0.012 0.0011 0.0008 0.0006 0.101 0.0010
(0.038) (0.032) (0.024) (0.031) (0.041) (0.033)

t(0.30)
0.003 0.003 0.005 0.005 0.104 0.003

(0.029) (0.027) (0.024) (0.027) (0.034) (0.028)

cure: cure rate; cp: censoring rate;

For the control group of a dynamic specificity in (1.2), two versions are presented. The first version
of control group, the event-free subjects at t have weighted with both a susceptible proportion πi and
Wi(t) in order to reflect the chance of experiencing the event and the time to event is certain to be
greater than t. The second version expands the control by including the subjects censored before t
which are weighted with the conditional survival probability. Therefore, the two versions of dynamic
specificity S pCW,1(c, t) and S pCW,2(c, t) are estimated by

S pCW,1(c, t) =

∑n
i=1 I(Mi ≤ c)I(T̃i > t)Ŵi(t)π̂i∑n

i=1 I(T̃i > t)Ŵi(t)π̂i
,

S pCW,2(c, t) =

∑n
i=1 I(Mi ≤ c)(I(T̃i > t) + (Ŝ (t)/Ŝ (T̃i))I(T̃i < t, δi = 0))Ŵi(t)∑n

i=1(I(T̃i > t) + (Ŝ (t)/Ŝ (T̃i))I(T̃i < t, δi = 0))Ŵi(t)
.

Then the corresponding time-dependent AUC(t)s are estimated by

AUCCW,1(t) =

∑n
i=1

∑n
j=1 Mi jI(T̃i ≤ t, δi = 1)I(T̃ j > t)Ŵi(Ti)Ŵ j(t)π̂ j∑n

i=1
∑n

j=1 I(T̃i ≤ t, δi = 1)I(T̃ j > t)Ŵi(Ti)Ŵ j(t)π̂ j
, (2.8)

AUCCW,2(t) =

∑n
i=1

∑n
j=1 Mi jI(T̃i ≤ t, δi = 1)(I(T̃i > t) + (Ŝ (t)/Ŝ (T̃i))I(T̃i < t, δi = 0))Ŵi(T̃i)Ŵ j(t)∑n

i=1
∑n

j=1 I(T̃i ≤ t, δi = 1)(I(T̃ j > t) + (S (t)/Ŝ (T̃ j))I(T̃ j < t, δi = 0))Ŵi(T̃i)Ŵ j(t)
.

(2.9)
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Table 2: Bias(sd) of AUC(t) at c ∼ exp(0.5exp(1.0Z))

(Cure,cen) n t AUCUno AUCB AUCW AUCBW AUCCW,1 AUCCW,2

(0.15, 0.35)

200
t(0.15)

0.020 0.012 0.010 0.012 0.013 0.013
(0.049) (0.047) (0.031) (0.048) (0.055) (0.050)

t(0.30)
0.037 0.020 0.014 0.016 0.004 0.001

(0.042) (0.041) (0.032) (0.043) (0.049) (0.045)

400
t(0.15)

0.021 0.032 0.012 0.012 0.014 0.001
(0.038) (0.037) (0.022) (0.039) (0.042) (0.039)

t(0.30)
0.036 0.020 0.019 0.016 0.005 0.005

(0.029) (0.029) (0.023) (0.04) (0.041) (0.040)

(0.30, 0.55)

200
t(0.15)

0.034 0.019 0.013 0.017 0.028 0.001
(0.052) (0.050) (0.037) (0.052) (0.059) (0.051)

t(0.30)
0.056 0.028 0.025 0.020 0.008 0.008

(0.042) (0.042) (0.037) (0.050) (0.056) (0.053)

400
t(0.15)

0.033 0.018 0.016 0.015 0.032 0.003
(0.037) (0.035) (0.024) (0.038) (0.043) (0.039)

t(0.30)
0.057 0.031 0.030 0.019 0.013 0.000

(0.031) (0.029) (0.024) (0.053) (0.061) (0.060)

(0.50, 0.70)

200
t(0.15)

0.039 0.017 0.012 0.015 0.056 0.005
(0.053) (0.062) (0.054) (0.065) (0.070) (0.067)

t(0.30)
0.070 0.030 0.027 0.012 0.030 0.002

(0.041) (0.058) (0.057) (0.075) (0.082) (0.077)

400
t(0.15)

0.036 0.018 0.013 0.018 0.061 0.003
(0.034) (0.035) (0.028) (0.036) (0.044) (0.036)

t(0.30)
0.067 0.032 0.030 0.012 0.038 0.002

(0.029) (0.028) (0.020) (0.057) (0.070) (0.061)

Cure: cure rate; cen: censoring rate;

For the variance estimation, the bootstrap samples are generated and the confidence intervals are
obtained from their standard deviations.

3. Simulation

In this section, the performance of the suggested estimators is evaluated with three situations; (i)
light censoring; 35% (cure-rate: 15%), (ii) medium censoring; 55% (cure-rate: 30%) and (iii) heavy
censoring; 70%(cure-rate: 50%), respectively. The difference of these censoring rates is inclined to
the amount of cure rates. For reflecting the effect of a covariate on cure rate, a failure time and a
censoring distribution, a covriate Z is generated from a normal distribution N(0, 1). A cure status
U = {0, 1} is generated based on Pr(U = 1) = (exp(γ0 + γ1Z))/(1 + exp(γ0 + γ1Z)), where γ0 is
selected to get a suitable cure rate and γ1 = −1.0. For a subject with U = 1, generate a failure time
T ∗ from a hazard function λ(t|U = 1) = λ0(t)exp(βZ), where a baseline hazard function is assumed
to follow a Weibull distribution and β = 0.5 is assigned to represent the effect of covariate on failure
time. Let the marker define as Mi = Z

′

i β̂ using the regression coefficient estimated at (2.3).
To compare the performance of several IPCW estimators of AUC(t), a censoring time is generated

with two scenarios. (i) Covariate independent censoring: λc = θc where θc = 0.5 and (ii) to reflect
the effect of covariate on the censoring, λc = 0.5exp(1.0Z). Then the observable time is composed of
(T̃ , δ, X), where T̃ = min(T ∗,C) and δ = I(T ∗ < C). For a cured subject with U = 0, set T̃ = C and
δ = 0.

300 datasets are generated with two sample sizes n = 200 and n = 400. Table 1 and Table 2 show
the biases and standard deviations of six estimators (AUCUno(t), AUCB(t) in (2.5), AUCW (t) in (2.6),
AUCBW (t) in (2.7), AUCCW,1(t) in (2.8) and AUCCW,2(t) in (2.9)) at two percentile points (t(0.15), t(0.30)).
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Table 3: Coverage probability of AUC(t) at n = 200 and (cure,cen) = (40%, 60%)

Covariate independent censoring
t(0.15) t(0.30)

Method Est SD SE CP Est SD SE CP
AUCUno 0.706 0.051 0.050 0.929 0.722 0.042 0.040 0.948
AUCB 0.707 0.054 0.051 0.935 0.723 0.048 0.043 0.967
AUCW 0.702 0.040 0.031 0.962 0.722 0.041 0.031 0.967
AUC∗BW 0.706 0.054 0.047 0.935 0.721 0.047 0.036 0.967
AUC∗CW,1 0.643 0.059 0.060 0.801 0.659 0.049 0.047 0.775
AUC∗CW,2 0.701 0.056 0.052 0.917 0.719 0.049 0.041 0.961

Covariate dependent censoring
t(0.15) t(0.30)

Method Est SD SE CP Est SD SE CP
AUCUno 0.720 0.055 0.051 0.890 0.75 0.044 0.042 0.680
AUCB 0.708 0.056 0.057 0.910 0.727 0.056 0.051 0.830
AUCW 0.705 0.049 0.045 0.860 0.723 0.052 0.047 0.830
AUCBW 0.707 0.056 0.060 0.900 0.718 0.062 0.064 0.900
AUCCW,1 0.660 0.057 0.065 0.940 0.692 0.059 0.068 0.970
AUCCW,2 0.689 0.056 0.061 0.930 0.693 0.058 0.064 0.930

Here AUCUno(t)(Uno et al., 2016) is also presented to show the effect of ignoring the cure rate but
reflecting the IPCW and obtained from the R package SurvAUC.

Table 1 shows the biases(standard deviations) of suggested methods when a censoring distribution
is independent of covariate. All estimates have similar results and seem to be unbiased. However,
AUCCW,1(t) shows large biases all cases. It seems to be related with the definition of a control group.
Implementing the weights to the subjects with T̃i > T seems to result in decreasing the size of the con-
trol group. Meanwhile, by augmenting the control group by including censored subjects, AUCCW,2(t)
have smaller biases. For the standard deviation, the AUCW (t) based on smoothing technique has the
smallest variation. Table 2 presents the simulation results at a covariate dependent censoring scenario.
For non-IPCW estimator, AUCUno(t) ignoring the cure rate has the largest biases increasing with a
censoring rates. The biases at t(0.3) tend to be larger than ones at t(0.15). Among the suggested IPCW-
based methods, AUCCW,2(t)) has smallest biases at all situations and AUCCW,1(t) has smaller biases at
low censoring rate but shows increasing biases. The IPCW-based AUCs at t(0.30) have smaller biases
compared with those values at t(0.15) which have different result with non-IPCW ones. Also, according
to standard deviation, the inclusion of weights brings the increment of variation of IPCW estimators.

Table 3 shows the coverage probabilities (CP) and the standard errors obtained using 50 bootstrap
samples at n = 200 with a censoring rate 60% and a cure-rate 40%. In order to distinguish between
IPCW estimators based on Ĝ(t) and Ĝ(t|Z), (AUC∗BW (t),AUC∗CW,1(t),AUC∗CW,2(t)) represent the results
obtained under the former case. Similar to the results of Table 1 and Table 2, under independent
censoring scheme, AUCCW,1(t) has much smaller CP because of large biases. Under covariate depen-
dent censoring, AUCUno(t), AUCB(t) and AUCW (t) show undesirable results while AUCCW,1(t) and
AUCCW,2(t) have coverage probabilities close to a nominal one.

4. Data analysis

We analyzed a malignant melanoma dataset which is available in the R package MASS. The dataset
consists of 205 patients whose tumors were completely removed together with the skin within a dis-
tance of about 2.5cm around it at the operation. The study started in the period 1962–1977 and all
patients have been followed for checking disease progression and survival until 1977. Among 205
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Table 4: Summary of regression models of Melanoma dataset

Cure model Censoring distribution
Susceptible rate Latency distribution Cox PH

Cov Est(se) p-value Est(se) p-value Est(se) p-value
Intercept −2.33(0.929) 0.012

Sex 0.288(0.582) 0.621 0.569(.532) 0.284 −0.041(0.178) 0.818
Log (thick) 0.042(0.095) 0.659 0.874(0.287) 0.002 −0.206(0.094) 0.028

Ulcer 1.323(0.641) 0.039 0.086(0.536) 0.872 0.196(0.197) 0.321
Age 0.019(0.017) 0.253 −0.008(0.013) 0.557 0.026(0.006) <0.0001

Table 5: Estimation of AUC values and 95% CI at t = (1, 4, 8) years of malignant melanoma patients

Method t = 1(Ŝ (t) = 0.97) t = 4(Ŝ (t) = 0.82) t = 8(Ŝ (t) = 0.68)
Est(se) 95% CI Est(se) 95% CI Est(se) 95% CI

AUCUno 0.904 (0.814,0.994) 0.824 (0.746,0.902) 0.772 (0.628,0.816)
AUCB 0.868 (0.768,0.968) 0.812 (0.706,0.918) 0.737 (0.643,0.831)
AUCW 0.789 (0.685,0.893) 0.780 (0.610,0.806) 0.731 (0.619,0.848)

covariate-independent censoring:G(t)
AUC∗BW 0.887 (0.785,989) 0.812 (0.710,0.914) 0.725 (0.615,0.835)
AUC∗CW,1 0.839 (0.729,0.949) 0.755 (0.669,0.841) 0.641 (0.527,0.755)
AUC∗CW,2 0.889 (0.787,0.991) 0.810 (0.706,0.914) 0.738 (0.634,0.842)

covariate-dependent censoring: G(t|Z)
AUCBW 0.887 (0.773,1.000) 0.812 (0.675,0.949) 0.672 (0.428,0.915)
AUCCW,1 0.838 (0.715,0.971) 0.755 (0.669,0.841) 0.583 (0.338,0.828)
AUCCW,2 0.888 (0.774,1.000) 0.809 (0.674,0.944) 0.701 (0.485,0.917)

patients, only 57 patients died of melanoma, 14 one died from other causes and the remaining were
alive. In this study, the death from other causes is regarded as a censoring (censoring rate 72%). The
time scale is days since operation and four covariates Z such as sex (male = 1), age at operation and
characteristics of the tumor such as tumor thickness (median = 1.94mm) and ulcer (1 = presence; 0
= absence). As the prediction model, we applied a PH cure model and R package smcure is used
to estimate the parameters. According to Table 4, unlike Wang and Wang’s result applying the ad-
ditive model λ(t|z) = λ0(t) + β

′

z, ulcer is significant (p-value = 0.039) at the susceptibility and log
(thickness) is significant in the hazard model (p-value = 0.002). At the regression model on censoring
distribution, two covarites (log (thickness) and age) are significant under the PH model. That is, older
patients with lower value of log (thickness) are likely to get censored.

Table 5 shows the nine AUC(t) values estimated at 1, 4, 8 years and 95% confidence intervals based
on the standard errors obtained from 100 bootstrap samples. Here, the mark Mi = Z

′

i β̂ is defined as
the risk score calculated from the estimated latency distribution. The suggested IPCW estimators
are presented with two versions according to the covariate-dependency on censoring distribution and
G(t) and G(t|Z) give (AUC∗BW ,AUC∗CW,1,AUC∗CW,2) and (AUCBW ,AUCCW,1,AUCCW,2), respectively.
Among unweighted AUC estimators, AUCW has the smallest values at all times. AUCUno has higher
values at all cases which is the same result as in the simulation. For AUCB and its weight versions
AUC∗BW and AUCBW , they have similar values at 1 year and 2 year but the weight versions have
smaller values at 8 year. For IPCW estimators, comparing the results based on G(t) and G(t|Z), the
AUC values at t = 1 and t = 4 year have almost same values but the covariate dependent AUC
values at 8 year have smaller values and larger standard errors. This result is explained with a high
censoring rate and uncommon weights Wi. AUCCW,2 and AUCBW show similar result but AUCCW,1 has
the smallest values at two censoring situations. According to simulation and data analysis, AUCCW,1
is unsuitable to apply as the predictive measure. Figure 1 presents the ROC curves of six estimators
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Figure 1: ROC(t) curves (AUCs) of six estimators at t = 1, 4, and 8 year.

at t = 1, 4 and 8 year with only covariate dependent versions of IPCW.

5. Concluding remarks

In this paper, we applied the IPCW approach to estimate time-dependent AUC for cure rate models
when a censoring distribution is related with covariates. Simulation results show that the proposed
procedures work well for covariate dependent censoring and a large censoring rate. However, Uno’s
method AUCUno(t) for right censored data still works at covariate independent censoring but has
largest biases at covariate dependent censoring. AUCW (t) based on the smoothing technique has the
smallest variation at all cases but shows large biases as censoring rate and sample size increases.
Among the IPCW-version estimators, AUCCW,1(t) shows a undesirable result at covariate independent
censoring but has small bias only at the case with covariate dependent light censoring rate. The
difference between AUCCW,1(t) and AUCCW,2(t) depends on the definition of the control group. At
the former case AUCCW,1(t), the only subjects with T̃ > t is included with weights which makes the
influence of true susceptible group decrease thus brings the underestimated result. At the latter case
AUCCW,2(t), the censored subjects with Ti < t is added to augment the control group with a weight
Pr(T > t|T > T̃ ) = S (t)/S (T̃ ). While it makes unbiased results at most scenarios, the implementation
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of the estimated survival function causes the increment of variation.
At melanoma data analysis, nine AUC(t) values are similar at the 1 and 4 year and the suggested

ones have smaller values than non-IPCW AUC as time increases. In particular, covariate-dependent
versions have large variations which bring the wider confidence intervals.

As another discriminative measure, a concordance index or C-index is defined as the proportion
of concordant pairs where a patient with an early event time is likely to have a higher marker. Asano
and Hirakawa (2017) proposed the C-index reflecting the patients’ cure status estimated the cure
rate model. A time-dependent C-index C(t) (Gerds et al., 2013) will be considered to evaluate the
prediction model of cure rate data.

As another interesting topic, dynamic prediction models have been studied with joint model and
landmark approach when a cure rate model includes longitudinal covariates (Rizopulos et al., 2017).
A two-dimensional AUC(s, t) can utilize to evaluate a time-dependent marker M(s) to predict the
survival probability at time t where s < t.
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