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Purpose : This paper introduces a computationally inexpensive context-dependent
classification of multi-echo MRI with Bayes compound decision model. In order to
produce accurate region segmentation especially in homogeneous area and along
boundaries of the regions, we propose a classification method that uses contextual
information of local neighborhood system in the image.

Material and Methods : The performance of the context free classifier over a
statistically heterogeneous image can be improved if the local stationary regions in
the image are disassociated from each other through the mechanism of the
interaction parameters defined at the local neighborhood level. In order to improve
the classification accuracy, we use the contextual information which resolves
ambiguities in the class assignment of a pattern based on the labels of the
neighboring patterns in classifying the image. Since the data immediately
surrounding a given pixel is intimately associated with this given pixel, then if the
true nature of the surrounding pixel is known this can be used to extract the true
nature of the given pixel. The proposed context-dependent compound decision model
uses the compound Bayes decision rule with the contextual information. As for the
contextual information in the model, the directional transition probabilities estimated
from the local neighborhood system are used for the interaction parameters.

Results : The context-dependent classification paradigm with compound Bayesian
model for multi-echo MR images is developed. Compared to context free
classification which does not consider contextual information, context-dependent
classifier show improved classification results especially in homogeneous and along
boundaries of regions since contextual information is used during the classification.
Conclusion : We introduce a new paradigm to classify multi-echo MRI using
clustering analysis and Bayesian compound decision model to improve the
classification results.

the image(1,2,3}. Conventional context-free medical im-

Introduction age classification techniques classify each pixel indepen-

dently and do not use spatial information between any

Many studies on the classification of multi channel M- pair of pixels during the classification procedure. In an
RI have been introduced to segment region of interest in image, however, the intensity-level of a pixel is depen-
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dent on those of neighboring pixels unless the image is
simply uncorrelated random noise. Therefore, the use of
contextual information in classifying image data has
long been desired to increase the efficiency and accura-
cy of the classification{4). The role of context in context-
dependent classification is to resolve ambiguities in the
class assignment of a pattern based on the labels of the
neighboring patterns. Since the data immediately sur-
rounding a given pixel is intimately associated with this
given pixel, then if the true nature (estimated class) of
the surrounding pixel is known, this can be used to ex-
tract the true nature of the given pixel. Welch and Salter
used compound decision theory to introduce contextual
information into decision scheme and laid the basic
background for contextual pattern classification(5). The
previous works show the Markov-Gibbs model can be
incorporated with Bayes decision rule and contextual in-
formation for the image classification(6,7).

In this paper, we present a computationally inexpen-
sive context-dependent Bayes classification with com-
pound decision model. Compared to context free classi-
fication, the unsupervised context-dependent classifica-
tion performs better in homogeneous area and along
boundaries as well as images corrupted with noise.

Theory and Method

1) The Aspects of Multi-Echo MR image Model

Let S be a set of sites over which an MR image is de-
fined. In multi-echo MR images, at each location s € S,
the three channel observation {gray level} ys= (ys, ys?,
ys®) can be constructed. Each component of ys, ys'=SD,
ys*=T1, and ys*=T2, is called spin density (proton den-
sity), spin-lattice relaxation time and spin-spin relaxation
time, respectively. The spin density is measured by im-
posing a strong magnetic field on the object (whose MR
image is to be obtained) and then exposing the object ra-
dio waves. The radio frequency response from the spin-
ning hydrogen nuclei results in an SD image being
formed. The relaxation time T1 is the time required for
the hydrogen nuclei to return their equilibrium position
in line with the magnetic field. T2 is the time required to
dephase the processing magnetic moments of the pro-
tons to point when there is no detectable signal. Usually
it is not possible to acquire all three of these signatures
simultaneously. However, it is possible, using specific
sequences of RF pulses, to acquire approximations to

some of the signatures from the same slice almost simul-
taneously. One such imaging methodology is called the
Spin-Echo protocol. In our case, the imaging protocol re-
sults in images which are predominantly SD and T2.

2) Clustering Analysis Algorithm

The task of clustering analysis is to uncover a reason-
able categorization of the data set. Those clustering s-
trategies of importance to us are parametric techniques.
If the class conditional densities happen to be Gaussian,
these parametric technique is optimal(9,10}. In our
work, we make an assumption that the clusters in the
distributions are approximately normally distributed
and a statistical analysis is done to validate goodness of
fit to a Gaussian model.

A well-known clustering algorithm is the k-means al-
gorithm, which can be used for estimating the parame-
ters of underlying distributions when the number of
classes is given. The main idea of the algorithm is the
minimization of a certain criterion functions, which are
usually functions of the derivations between all patterns
from their respective cluster centers. With an arbitrary
chosen initial cluster configuration, the algorithm
changes the cluster members iteratively to obtain a bet-
ter configuration. In general, the sum of squared
Euclidean distances is adopted as a respective criterion
to the algorithm. Due to its computational simplicity,
the algorithm is straightforward to understand.
However, the major weakness of the optimization prob-
lem is that the k-means algorithm has no guarantee that
the iterative process will converge and it may result in a
solution which corresponds to a local minimum.

The other approach is the agglomerative algorithm
which attempts to find an intrinsic number of classes in
the image. With a large number of classes, the algorithm
merges them until some minimum number of classes is
reached. In this work we employed an agglomerative al-
gorithm in which square neighborhoods of the image
are used as initial cluster center. The idea behind the ag-
glomerative clustering algorithm is as follows:- First, the
MR image is subdivided into n X n square for two dimen-
sional images. Each square may be of any size greater
than 1 X 1 but we limit its size to a maximum of 3 X 3.
For each neighborhood, the mean vectors and covari-
ance matrices are computed. Then initial clusters are
chosen from spatial neighborhoods which occur in ho-
mogeneous regions of the image. In other words, where
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the intensity variation is less than a specific level is se-
lected. When an arbitrary number of clusters are found,
then they are merged to provide a number of final clus-
ters.

The underlying philosophy used here to determine a
homogeneous neighborhood is to find areas of low vari-
ance which represent homogeneous areas of the image.
We opt to use the trace of the covariance matrix, which
is the sum of the variance of the sampling neighbor-
hoods for each multivariate image, given by

1 1 x+n y+n

Tvar = = 2 2 (gli,j—MI)Z [1]

w =0 i=x i=y

where (x,y} is the upper-left location of the n X n neigh-
borhood and M is the mean of the neighborhood. Only
those neighborhoods with the variance less than a
threshold are accepted as the initial clusters. The next
step in the process is to merge the clusters into some
meaningful number of clusters which we believe repre-
sents the number of classes actually present. The merg-
ing process iteratively merges two clusters based on
some criteria.

One of the criteria of optimality used to evaluate fea-
ture vectors is the Bayes risk. In the real world, howev-
er, obtaining the a posteriori distribution is a difficult
problem. Thus, finding more practical criteria is desir-
able, and we consider here two types of such criteria fre-
quently used in practice. One is a family of functions of
scatter matrices based on a metric such as Euclidean dis-
tance. This criteria is conceptually simple but it does not
relate to the Bayes error directly. The other is a family of
criteria which give upper bounds of the Bayes error
such as Bhattacharyya distance. The criteria are used to
measure the class separability between distributions.
The Euclidean distance between the means of the class
distributions is a simple way to measure class separabili-
ty. Once the class centers M, of the class w; are calculat-
ed, the Euclidean distance between »; and w; is defined
as

E; =/IM, - (M, -M) 2

The Euclidean distance is easily computable and un-
derstandable. However, a large distance between the
means does not simply mean that two distributions do
not overlap because the covariance between the class is

not used in the calculation.

The Bhattacharyya distance uses both the class means
and the covariances between classes to measure class
separability. The Bhattacharrya distance between two
normal distributions is written by

1 2.+ 2 1 i; ‘
= = (M M2 Sy 2
Bg 3 (M, ]VI])( 3 M+ 3 in 3 Z'j [3]

where J';and J'; are covariance matrices of ®; and @;,
respectively.

It is important to note that the above distance function
uses both distribution parameters {mean, covariance) in
its calculation. The equation shows that the first term of
the Bhattacharyya distance is related to the class separa-
bility due to a difference in means, while the second
term is related to the class separability due to difference
between the covariance matrices.

Then the estimation of the mean vectors (M,,) and co-
variance matrices (2} for the merged clusters is re-
quired and expressed by the following formulas provid-
ed the clusters being merged are Gaussian(8):-

n +n
_ My + 1M,
M, Ny + 1y,

5 =np(2'p+MpMp +nq(2q+MquT)_M MI [
m n,+n, mem

where 2, and X', are the predecessor covariance ma-
trices. The clustering process is continued until some
predetermined number of classes are found or the s-
mallest distance between clusters is greater than a
threshold value.

3) Statistical Analysis of Clustering Model

Parametric classification including Bayes' s method
are optimal if the class conditional densities are
Gaussian. Therefore, statistical verification of normality
of the given data set to justify deploying Bayes' s deci-
sion rule in the image classification is necessary. The
Chi-square {x?) test, which is used to test whether there
are significant variation in the probability function, is
sufficient when the dimensionality of the data set is low.
However, the number of cells increases exponentially
with the dimensionality and thus the x? test is impracti-
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cal for a high dimensional data set. One technique
adapted to high dimensional data set is the Kolmogorov-
Smirnov(KS} test(10}. Based on available samples, a sta-
tistic is computed which may be used to accept or reject
the Gaussian hypothesis. The KS statistic, which tests
whether there is a significant difference in the
Cumulative Distribution Function, is desirable for our
case.

Given a distribution of X with the sample mean vector
M and the sample covariance matrix &', the empirical
distribution of X is expresses by the following quadric
form

1 B}
(- = (X-M)" 21 X-M). (5]

The density function of { has the form of gamma dis-
tribution, I'(a, A). Specifically, the density function
has the form of gamma distribution I7(n/2,2) where n is
the dimension of the given data set provided M and &'
are known. The test can be extended when M and 2" are
not known, but estimated by the sample mean and sam-
ple covariance. When X is normal, §, becomes beta dis-
tribution, which is the distribution on [0,1] parameter-
ized by the positive parameters p and g, is represented

Ilp+gl _eri(1-g)rt o<t <1 6
te T Tlal &4 o<f< [6]
wherep=—g—, g= N—g-l

For the Kolmogorov-Smirnov test the computed distri-
bution of § and the theoretical distribution are used as
input values. The cumulative distributions of both the
theoretical and empirical distribution is used for the test.
The KS statistic is defined as follow:

Definition : Let x; , i=1 ---, N'be the sample of a cumu-
lative distribution(CDF) Sy, (x) and let F* (x) be the em-
pirical CDF. Then the Kolmogorov-Smirnov statistic|(d)
is

d = max| Sy [x}) - F* (x) |. (7]

The Kolmogorov-Smirnov statistic d is the maximum

difference between the two cumulative distribution
functions. Under the significance level of probability for
the null hypothesis that the data sets are drawn from the
same distribution, the KS statistic is useful for determin-
ing the equivalence of two distribution.

4) Bayesian Compound Model for Context-
Dependent Classification

Parametric classification refers to the development of
statically defined discriminant functions in which the
underlying probability functions are assumed known.
Assume that homogeneous region of the images is
Gaussian, and it is defined in the N-dimensional image
histogram spaces; then the distribution of a variable x is
describes by its mean g and its covariance ¢ . According
to Bayes s rule:

PIS|PLS)
PiSi.} = ilx i

If probability density functions of the classes, S;, are
assumed to be normal, then the N variate normal distri-
bution becomes:

PINIS) = g Pl bomd (81°0cal} [0

where:

4 is the mean vector of class i

#,1is the covariance matrix of class i

The context free classifier assign x to class S; if p(x | S})
= pix| S)) for all i # j. In practices, in order to avoid ex-
ponential calculation during the actual classification we
evaluate In P(S; | x).

Suppose the statistical decision problem is repeated n
times and there is no relationship among the n repeti-
tions; then the n decision problems having identical
generic structure constitute a compound decision prob-
lem(3}. Given a set £ = {w;, ==, »,} of states of nature
and a corresponding set G=(g;, == , g, of vector-valued
random variables, the compound decision rule will min-
imize the compound Bayes loss

2, LI0,9") Plg, | ) Plo) 110}

where G is the set of pattern vectors for all pixels in
the image frame and C is the number of classes. The sig-
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nificant difference between the compound decision rule
/\ and the simple decision rule is that the first uses all the
} pattern vectors to estimate the nature w,, while the sec-

: ond uses the vector from the pixel s only.
In practical situations, the direct calculation of the
compound Bayes loss is impossible. For example, sup-

>
/—\ / \ pose the size of an image frame is 256 X 256 so that the

) G is a 256* dimensional vector of vectors. Thus, the den-

! \ (
s ) S, : . : .
\_/ v sity function P(G | w,) defined on this vector space can-

not be evaluated with any ease since the dimensionality
of the configuration space is enormous. For the evalua-

// \\ tion of density function some simplified assumptions
( S | which are based on the observation that two adjacent
\‘4// pixels in the image are unconditionally correlated and

the degree of correlation depends on the distance be-

‘Fig. 1. Labeling of neighbors of pixel s tween pixels is used. This observation provides us with
the neighborhood system, where only the neighboring

- - -
- - s
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'
n
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Fig. 2. () Bivariate test image (b) 3D histogram of distributions in test image (¢} KS test for the distribution of quadrant
1 {d) Result of minimum distance classification (@) Result of maximum likelihood classification (f} Result of Bayes
compound classification
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pattern vectors of a certain pixel s are thought to contain
information about the unknown nature of w,. The first
assumption is that the contextual relations between non-
adjacent cells are negligible while defining adjacent cells
to be any two pixels which are physically adjacent.
Therefore, in a 4-pixel neighborhood system(Fig. 1) the
pixelss;, (i=1,2,3,4) interact directly with only with cen-
ter pixel s; not with each other. The second assumption
is that the pattern g; of pixel w, is a function of only of w,,
the true class of the pixel.

Based on such assumption, the context-dependent
compound decision model uses the compound Bayes
decision rule with the contextual information. As for the
contextual information in the model, the directional
transition probabilities are used. The decision rule for a
four neighborhood system becomes g, &w,, if the follow-
ing conditions are satisfied for all k + [

Plg, ) Pia) [, 3| Plg,| ) plo] @) > Ple.| @) Plo)

4 C
1.1}1 j§1 Plg,| ) plw| ). [11]

The four multipliers in the product term represent the
contextual distributions from the four adjacent neighbor
pixels. The estimation of the transition probability

Plo, =cj| w,=c) would be n,./n. where n, is the num-
ber of occurrences of class ¢; and Mo, is the number of
occurrence of w,_having class ¢c; when o has class
¢;. The compound decision model provides contextual
information in the form of directional probabilities dur-
ing the classification. However, usually the true classes
of neighbors are not available; only the neighboring pat-
terns are available. Thus the step of classifying the
neighbors is necessary before classification can proceed.

Experimental Results
Classifications for the synthetic image and actual MRI
have been done for the evaluation of the proposed ap-

Fig. 3. (a) Sample MR image (b)
Result of minimum

distance classification (¢} Result of
maximum likelihood classification
{d} Result of Bayes compound clas-
sification
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proach. In image classification, it is often necessary to
generate a simulated data set before applying the pro-
posed classification algorithm to the multi-echo MR im-
ages. In our case here, the sample images to be tested
should be normally distributed samples according to
given expected mean vectors{M) and covariance matri-
ces(2). Therefore, given means 2| ={60,50), M,
=(130,120), M4 =(220, 190}, M, =(290, 270) and the co-
variance 0, =0,,=1/1000 , a bivariate synthetic image,
which is composed of four distributions, is generated
(Fig. 2(a)). The natural clustering and 3 dimensional his-
togram of the synthetic image is composed of four distri-
butions with overlaps as shown in Fig. 2 (b). The next
step we need is to test the normality of each distribution
of the image because Bayes theory is optimal for the
normally distributed sample data. The Kolmogrov-
Simirnov statistic is used to test the hypothesis that the
pixel populations from which the individual clusters are

derived are normally distributed in the bivariate syn-

thetic image parameter space. For the test, 100 random
samples are collected from quadrant 1 and the theoreti-
cal and empirical distributions are evaluated. Fig. 2(c)
explains that the sample distribution is normally distrib-
uted. As a result, the class map of the synthetic image
(Fig. 2{f)) using context-dependent classification based
on Bayes compound model shows much clear result
rather than using context-free classification (Fig. 2{d}-(e})
especially in homogeneous region and regions along the
boundaries.

To actual muti-echo MR images, each classification
method is applied. The mid brain images (Fig. 3(a), Fig.
4(a)) which are composed of SD and T2 image are used
for the test. Both the minimum distance classifier and
maximum likelihood classifier are adopted for context-
free classification. The results of minimum distance
classification and maximum likelihood classification are
illustrated in Fig. 3(b},4(b) and Fig. 3(b),4(c), respective-
ly. Classification results({Fig. 3(d}, 4(d)} using context-de-

Fig.4. {a) Sample MR image (b)
Result of minimum distance
classification [¢) Result of maxi-
mum likelihood classification

(d) Result of Bayes compound clas-
sification
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pendent compound Bayes classification show better re-
sults rather than the results using context-free classifica-
tion by reducing numbers of misclassifications of each
class.

Conclusion

This paper introduces a context-dependent classifier
using Bayes compound decision model for multisigna-
ture magnetic resonance images. For this purpose, we
first use clustering analysis for the target images to ana-
lyze the distributions of the image. From the analysis of
the image, we extract the parameters of distributions,
i.e., means and covariance vectors of each class which
are basically used for context-free classification. To in-
crease the performance of the classifier over statistically
heterogeneous image, we adopt Bayes compound deci-
sion model for context-dependent classification. The sig-
nificant difference between the compound decision rule
and simple decision rule is that the compound decision
rule uses all the pattern vectors to estimate configura-
tion, while the simple rule uses the vector from the pixel
itself. However, usually the true class of neighbors are
not available and only the neighboring patterns are
available. Thus, the contextual information can be
achieved from the context-free classification. The com-
pound decision model provides contextual information
in the form of directional transitional probability during
the classification. The strength of correlation among the
pixels in the neighborhood system is explained by the
directional transitional probability.

As illustrated in the experimental results, the context-
dependent classification using Bayes compound deci-
sion model provides better performance in the classifi-
cation rather then the results using only context free

classification. Especially, the numbers of misclassifica-
tion in the homogeneous region and along the bound-
aries are reduced when the context-dependent classifi-
cation is applied.
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