본 논문에서는 최적화 알고리즘인 유전자 알고리즘과 context-based FCM 클러스터링 방법을 이용하여 새로운 형태의 RBF 뉴럴 네트워크의 포괄적인 설계 방법론을 소개한다. 제안된 구조는 클러스터링 기법을 기반하여 사용된 데이터의 특성에 효과적인 모델을 구축하고자 한다. 또한 유전자 알고리즘을 이용하여 모델의 최적화에 주요한 영향을 미치는 파리미터들(-은닉층에서의 contex의 수, contex에 포괄되는 노드의 수, 그리고 contex에 입력되는 입력변수)을 동조한다. 제안된 모델의 설계 공정은 1) K-means 클러스터링을 통한 context fuzzy set에 대한 정의와 설계, 2) context-based fuzzy clustering에 대한 모델의 적용과 이에 따른 모델 구축의 효율성, 3) 유전자 알고리즘을 통한 모델 최적화를 위한 파라미터들의 최적화와 같은 단계로 구성되어 있다. 구축된 RBF 뉴럴 네트워크의 후반부 다항식에 대한 parameter들은 성능지수를 최소화하기 위해 Least Square Method에 의해서 보정된다. 본 논문에서는 모델을 설계함에 있어서 체계적인 설계 알고리즘을 포괄적으로 설명하고 있으며, 더 나아가 제안된 모델의 성능을 다른 표준적인 모델들과 대조함으로써 제안된 모델의 우수성을 나타내고자 한다.
FCM 클러스터링 알고리즘은 대표적인 분할기반 군집화 알고리즘이며 다양한 분야에서 성공적으로 적용되어 왔다. 그러나 FCM 클러스터링 알고리즘은 잡음 및 지역 데이터에 대한 높은 민감도, 직관적인 결과와 상이한 결과 도출 가능성이 높은 문제, 초기 원형과 클러스터 개수 설정 문제 등이 존재한다. 본 논문에서는 FCM 알고리즘의 결과를 해당 속성의 데이터 축에 사상하여 퍼지구간을 결정하고, 결정된 퍼지구간을 FDT에 적용함으로써 FCM 알고리즘이 가지는 문제 중 잡음 및 데이터에 대한 높은 민감도, 직관적인 결과와 상이한 결과 도출 가능성이 높은 문제를 개선하는 시스템을 제안한다. 또한 실제 교통데이터와 강수량 데이터를 이용한 실험을 통하여 제안 모델과 FCM 클러스터링 알고리즘을 비교한다. 실험 결과를 통해 제안 모델은 잡음 및 데이터에 대한 민감도를 완화시킴으로써 보다 안정적인 결과를 제공하며, FCM 클러스터링 알고리즘을 적용한 시스템보다 직관적인 결과와의 일치율을 높여줌을 알 수 있다.
본 논문에서는 fuzzy granular computing 방법 중의 하나인 context-based FCM을 이용하여 granular-based radial basis function neural network에 대한 기본적인 개면과 그들의 포괄적인 설계 구조에 대해서 자세히 기술한다. 제안된 모델에 기본이 되는 설계 도구는 context-based fuzzy c-means (C-FCM)로 알려진 fuzzy clustering에 초점이 맞춰져 있으며, 이는 주어진 데이터의 특징에 맞게 공간을 분할함으로써 효율적으로 모델을 구축할 수가 있다. 제안된 모델의 설계 공정은 1) Context fuzzy set에 대한 정의와 설계, 2) Context-based fuzzy clustering에 대한 모델의 적용과 이에 따른 모델 구축의 효율성, 3) 입력과 출력공간에서의 연결된 information granule에 대한 parameter(다항식의 계수들)에 대한 최적화와 같은 단계로 구성되어 있다. Information granule에 대한 parameter들은 성능지수를 최소화하기 위해 Least square method에 의해서 보정된다. 본 논문에서는 모델을 설계함에 있어서 체계적인 설계 알고리즘을 포괄적으로 설명하고 있으며 더 나아가 제안된 모델의 성능을 다른 표준적인 모델들과 대조함으로써 제안된 모델의 우수성을 나타내고자 한다.
In the vision of ubiquitous computing environment, smart objects would communicate each other and provide many kinds of information about user and their surroundings in the home. This information enables smart objects to recognize context and to provide active and convenient services to the customers. However in most cases, context-aware services are available only with expert systems. In this paper, we present generalized activity recognition application in the smart home based on a naive Bayesian network(BN) and fuzzy clustering. We quantize continuous sensor data with fuzzy c-means clustering to simplify and reduce BN's conditional probability table size. And we apply mutual information to learn the BN structure efficiently. We show that this system can recognize user activities about 80% accuracy in the web based virtual smart home.
유비쿼터스 기술의 보편화에 따라 유비쿼터스 환경의 보안 취약성을 해결하기 위한 보안기술의 연구가 주목받고 있다. 그러나 현재의 대다수 보안 시스템은 고정된 규칙을 기반으로 하는 것으로서, 유비쿼터스 기반 사용자의 다양한 상황에 제대로 대응하지 못하는 문제점이 있다. 또한 기존의 상황인식 보안 연구는 ACL (Access Control List) 혹은 RBAC (Role-Based Access Control) 계열의 연구가 많이 수행되고 있으나 보안정책의 관리에 대한 오버헤드가 크고, 또한 예상하지 못한 상황에 대한 대응이 어렵다는 문제점을 보이고 있다. 이에 본 논문에서는 FCM (Fuzzy C-Means) 클러스터링 알고리즘과 퍼지 결정트리를 이용하여 다양한 상황을 인식하고 적절한 보안기능을 제공하는 상황인식 보안 서비스를 제안한다. 제안 모델은 기존의 RBAC 계열의 시스템이 가진 고정 규칙에 따른 문제나 충돌 문제, 관리상의 오버헤드를 개선할 수 있음을 확인할 수 있다. 제안 모델은 헬쓰케어 시스템이나 응급구호 시스템 등 상황 인식을 통하여 사용자의 상황에 적합한 서비스를 제공하는 다양한 애플리케이션에 응용 가능할 것으로 기대된다.
유비쿼터스 환경의 확산에 따른 다양한 보안문제의 발생은 센서의 정보를 이용한 상황인식 보안 서비스의 필요성을 증대시키고 있다. 본 논문에서는 FCM (Fuzzy C-Means) 클러스터링과 다변량 퍼지 결정트리 (Multivariate Fuzzy Decision Tree)를 이용하여 센서의 정보를 분류함으로써 사용자의 상황을 인식하고, 사용자가 처한 상황에 따라 다양한 수준의 보안기술을 유연하게 적용할 수 있는 상황인식 보안 서비스를 제안한다. 제안 모델은 기존에 많이 연구되어 오던 고정된 규칙을 기반으로 하는 RBAC(Role-Based Access Control)계열의 모델보다 더욱 유연하고 적합한 결과를 보여주고 있다.
본 논문에서는 주어진 데이터의 입자화 특성을 효과적으로 모델 구축에 반영하고자 재구성 평가 기준을 통한 새로운 형태의 입자화 기반 RBF 뉴럴 네트워크를 개발한다. 주어진 데이터들의 입자화 특성을 파악하기 위해서 새로운 형태의 FCM 클러스터링(-Context-based fuzzy clustering)을 이용한다. 즉, 출력 공간의 입자화 특성은 K-means clustering 방법을 사용한 것에 반해, 입력 공간에서의 정보들은 Context-based fuzzy clustering 방법을 이용하여 효율적으로 데이터의 특성을 파악하여 모델의 구축에 반영하였으며, 또한 모델의 최적화를 위하여 RBF 뉴럴 네트워크의 은닉층의 수를 재구성 평가 기준을 통하여 모델의 최적화를 꾀하였다. 제안된 모델의 효율적인 특성을 보여주기 위해 저차원 합성 데이터를 이용하여 모델을 평가한다.
기존의 화재 감시 시스템은 보통 연기, CO 혹은 온도나 온도의 변화량을 가지고 화재여부를 판단하였다. 대부분 각각의 센서에서 측정된 값을 미리 설정한 값과 비교하여 기준을 넘었을 경우에 화재라고 결정한다. 그러나 화재 가능성이 있는 상황도 정확히 예측하는 것이 화재를 예방하기 위해 요구된다. 본 연구에서는 여러 인자들 간의 조합에 의한 규칙을 생성하고, 불명확한 데이터 처리가 가능한 퍼지추론을 사용하여 화재상황을 인식하는 방식을 제안한다. 또한 퍼지추론 방식에서 지식의 일반화, 형식화의 문제점을 해결하기 위해, 화재의 특정 패턴들의 특징을 찾아서 분석하고 규칙베이스를 구축함으로써 시스템의 성능을 더욱 향상 시킨다. 화재의 레벨을 3단계(정상, 주의, 위험)로 나누고, 각 단계별로 훈련데이터를 FCM(fuzzy C-means clustering)에 의해 규칙화 하여 추론하는 시스템을 제안한다. 제안된 방식을 UCI의 삼림화재 데이터를 이용하여 성능을 평가한다.
유비쿼터스 기술의 보편화에 따라 유비쿼터스 환경의 보안 취약성을 해결하기 위한 보안기술의 연구가 주목받고 있다. 그러나 현재의 대다수 보안 시스템은 고정된 규칙을 기반으로 하는 것으로서, 유비쿼터스 기반 사용자의 다양한 상황에 제대로 대응하지 못하는 문제점이 있다. 또한 기존의 상황인식 보안 연구는 ACL (Access Control List) 혹은 RBAC (Role-Based Access Control) 계열의 연구가 많이 수행되고 있으나 보안정책의 관리에 대한 오버헤드가 크고, 또한 예상하지 못한 상황에 대한 대응이 어렵다는 문제점을 보이고 있다. 이에 본 논문에서는 퍼지 알고리즘과 MAUT를 이용하여 다양한 상황을 인식하고 적절한 보안기능을 제공하는 상황인식 보안 서비스를 제안한다.
In this study, we introduce a new design methodology of a granular-oriented self-organizing polynomial neural networks (GoSOPNNs) that is based on multi-layer perceptron with Context-based Polynomial Neurons (CPNs) or Polynomial Neurons (PNs). In contrast to the typical architectures encountered in polynomial neural networks (PNN), our main objective is to develop a methodological design strategy of GoSOPNNs as follows : (a) The 1st layer of the proposed network consists of Context-based Polynomial Neuron (CPN). In here, CPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Context-based Fuzzy C-Means (C-FCM) clustering method. The context-based clustering supporting the design of information granules is completed in the space of the input data while the build of the clusters is guided by a collection of some predefined fuzzy sets (so-called contexts) defined in the output space. (b) The proposed design procedure being applied at each layer of GoSOPNN leads to the selection of preferred nodes of the network (CPNs or PNs) whose local characteristics (such as the number of contexts, the number of clusters, a collection of the specific subset of input variables, and the order of the polynomial) can be easily adjusted. These options contribute to the flexibility as well as simplicity and compactness of the resulting architecture of the network. For the evaluation of performance of the proposed GoSOPNN network, we describe a detailed characteristic of the proposed model using a well-known learning machine data(Automobile Miles Per Gallon Data, Boston Housing Data, Medical Image System Data).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.