• 제목/요약/키워드: Context data

검색결과 3,304건 처리시간 0.03초

Context Aware System based on Bayesian Network driven Context Reasoning and Ontology Context Modeling

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권4호
    • /
    • pp.254-259
    • /
    • 2008
  • Uncertainty of result of context awareness always exists in any context-awareness computing. This falling-off in accuracy of context awareness result is mostly caused by the imperfectness and incompleteness of sensed data, because of this reasons, we must improve the accuracy of context awareness. In this article, we propose a novel approach to model the uncertain context by using ontology and context reasoning method based on Bayesian Network. Our context aware processing is divided into two parts; context modeling and context reasoning. The context modeling is based on ontology for facilitating knowledge reuse and sharing. The ontology facilitates the share and reuse of information over similar domains of not only the logical knowledge but also the uncertain knowledge. Also the ontology can be used to structure learning for Bayesian network. The context reasoning is based on Bayesian Networks for probabilistic inference to solve the uncertain reasoning in context-aware processing problem in a flexible and adaptive situation.

추상화 기반 상황정보 접근 제어 프레임워크 (Abstraction Based Context Data Access Control Framework)

  • 김윤삼;조은선;조위덕
    • 전자공학회논문지CI
    • /
    • 제47권6호
    • /
    • pp.8-18
    • /
    • 2010
  • 유비쿼터스 시스템의 발달에 따라 시스템이 다루는 상황정보의 숫자 또한 크게 증가하고 있다. 이러한 상황정보 중에는 정보보호 관점에서 중요한 데이터들이 다수 존재한다. 이러한 중요한 상황정보가 다른 사용자 또는 서비스에게 제공됨에 따라 개인정보의 과도한 노출 가능성 또한 크게 증가되고 있다. 이러한 과도한 정보의 노출을 위하여 여러 시스템은 접근 제어 기법을 주로 이용하나 이러한 기존 기법은 허가되지 않은 정보의 접근을 막을 수는 있으나 허가된 정보의 제공에서 발생하는 과도한 정보의 노출은 막을 수 없다는 문제점을 가지고 있다. 본 논문은 이러한 개인정보의 과도한 노출을 막기 위하여 상황정보를 추상화하여 제공하는 접근 제어 프레임워크를 제안한다. 상황정보의 과도한 노출을 막기 위하여 협상 프로토콜과 RDF를 이용한 상황정보 추상화를 제공하며, 이를 통하여 개인정보의 보호와 동시에 서비스의 연속성을 유지한다.

MEC 환경에서의 Social Context를 이용한 트래픽 오프로딩 알고리즘 (Traffic Offloading Algorithm Using Social Context in MEC Environment)

  • 천혜림;이승규;김재현
    • 한국통신학회논문지
    • /
    • 제42권2호
    • /
    • pp.514-522
    • /
    • 2017
  • 트래픽 오프로딩은 폭발적으로 증가하는 모바일 트래픽에 대응하기 위한 유망 솔루션이다. 오프로딩 방법 중, LIPA/SIPTO 오프로딩에서는 애플리케이션의 QoS 요구사항을 만족하면서 트래픽을 오프로딩할 수 있다. 또한, SNS로 인한 많은 트래픽때문에 social context를 이용한 트래픽 오프로딩이 필요하다. 그러므로, 본 논문에서는 social context를 이용하여 트래픽을 오프로딩하는 LIPA/SIPTO 오프로딩 알고리즘을 제안한다. 먼저, 애플리케이션 인기도를 social context로 이용하여 애플리케이션 선택확률을 정의한다. 그 다음, effective data rate 관점에서 소형셀 사용자의 QoS를 최대화하는 최적의 오프로딩 weighting factor를 찾는다. 마지막으로, 애플리케이션 선택확률과 오프로딩 weighting factor를 기반으로 각 애플리케이션의 오프로딩 비율을 정한다. 성능분석 결과, 제안한 알고리즘의 오프로딩 비율이 기존 알고리즘의 약 46%임에도 불구하고, 제안한 알고리즘의 effective data rate achievement ratio 값이 기존 알고리즘과 비슷한 것을 확인하였다.

다중센서 데이터융합 기반 상황추론에서 시간경과를 고려한 클러스터링 기법 (A Novel Clustering Method with Time Interval for Context Inference based on the Multi-sensor Data Fusion)

  • 유창근;박찬봉
    • 한국전자통신학회논문지
    • /
    • 제8권3호
    • /
    • pp.397-402
    • /
    • 2013
  • 다중센서를 이용한 상황인식에서 시간변화는 고려해야 하는 요소이다. 센서가 감지하여 보고한 정보를 바탕으로 상황추론에 도달하고자 하는 경우, 일정 시간 간격별로 묶어서 검토하는 것이 유용하다. 본 논문에서는 시간경과를 고려하는 클러스터링 기법을 이용한 다중센서 데이터융합을 제안한다. 각 센서별로 일정시간 간격동안 수집되어 보고된 센싱 정보를 묶어 1차 데이터융합을 실시하고 그 결과를 대상으로 다시 2차 데이터융합을 실시하였다. Dempster-Shafer이론을 이용하여 다중센서 데이터융합을 실시하고 그 결과를 분석하여 상황을 추론하는데 시간간격을 기준으로 세분화시켜 평가하고 이것을 다시 융합함으로써 향상된 상황 정보를 추론할 수 있다.

사용자 건강 상태알림 서비스의 상황인지를 위한 기계학습 모델의 학습 데이터 생성 방법 (Generating Training Dataset of Machine Learning Model for Context-Awareness in a Health Status Notification Service)

  • 문종혁;최종선;최재영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권1호
    • /
    • pp.25-32
    • /
    • 2020
  • 다양한 분야에서 활용되는 상황인지 시스템은 상황정보를 획득하기 위한 추상화 과정에서 규칙 기반의 인공기능 기술이 기존에 사용되었다. 그러나 서비스에 대한 사용자의 요구사항이 다양해지고 사용되는 데이터의 증대로 규칙이 복잡해지면서 규칙 기반 모델의 유지보수와 비정형 데이터를 처리하는데 어려움이 있다. 이러한 한계점을 극복하기 위해 많은 연구들에서는 상황인지 시스템에 기계학습 기술을 적용하였으며, 이러한 기계학습 기반의 모델을 상황인지 시스템에 사용하기 위해서는 주기적으로 학습 데이터를 제공해야 한다. 이에 기계학습 기반 상황인지 시스템에 대한 선행연구에서는 여러 개의 기계학습 모델을 적용하기 위한 학습 데이터 생성, 제공 등의 과정을 보였으나 제한된 종류의 기계학습 모델만을 적용 가능하여 확장성이 고려되어야 한다. 본 논문은 기계학습 기반의 상황인지 시스템의 확장성을 고려한 기계학습 모델의 학습 데이터 생성 방법을 제안한다. 제안하는 방법은 시스템의 확장성을 고려하여 기계학습 모델의 요구사항을 반영할 수 있는 학습 데이터 생성 모델을 정의하고 학습 데이터 생성 모듈을 바탕으로 각각의 기계학습 모델의 학습 데이터를 생성하는 것이다. 시스템의 확장성의 검증을 위해 실험에서는 노인의 건강상태 알림 서비스를 위한 심박상태 분석 모델을 대상으로 한 학습데이터 생성 스키마를 기반으로 학습데이터 생성 모델을 정의하고 실환경에서 정의된 모델을 S/W에 적용하여 학습데이터를 생성한다. 또한 생성된 학습데이터의 유효성을 검증하기 위해 사용되는 기계학습 모델에 생성한 학습데이터를 학습시켜 정확도를 비교하는 과정을 보인다.

모바일 증강현실을 위한 온톨로지 기반 POI 데이터 모델 (Ontology-based Points of Interest Data Model for Mobile Augmented Reality)

  • 김병호
    • 한국IT서비스학회지
    • /
    • 제10권4호
    • /
    • pp.269-280
    • /
    • 2011
  • Mobile Augmented Reality (mobile AR), as one of the most prospective mobile applications, intends to provide richer experiences by annotating tags or virtual objects over the scene observed through camera embedded in a handheld device like smartphone or pad. In this paper, we analyzed the current status of the art of mobile AR and proposed a novel Points of Interest (POIs) data model based on ontology to provide context-aware information retrievals on lots of POIs data. Proposed ontology was expanded from the standard POIs data model of W3C POIs Working Group and established using OWL (Web Ontology Language) and Protege. We also proposed a context-aware mobile AR platform which can resolve three distinguished issues in current platforms : interoperability problem of POI tags, POIs data retrieval issue, and context-aware service issue.

A Hierarchical Context Dissemination Framework for Managing Federated Clouds

  • Famaey, Jeroen;Latre, Steven;Strassner, John;Turck, Filip De
    • Journal of Communications and Networks
    • /
    • 제13권6호
    • /
    • pp.567-582
    • /
    • 2011
  • The growing popularity of the Internet has caused the size and complexity of communications and computing systems to greatly increase in recent years. To alleviate this increased management complexity, novel autonomic management architectures have emerged, in which many automated components manage the network's resources in a distributed fashion. However, in order to achieve effective collaboration between these management components, they need to be able to efficiently exchange information in a timely fashion. In this article, we propose a context dissemination framework that addresses this problem. To achieve scalability, the management components are structured in a hierarchy. The framework facilitates the aggregation and translation of information as it is propagated through the hierarchy. Additionally, by way of semantics, context is filtered based on meaning and is disseminated intelligently according to dynamically changing context requirements. This significantly reduces the exchange of superfluous context and thus further increases scalability. The large size of modern federated cloud computing infrastructures, makes the presented context dissemination framework ideally suited to improve their management efficiency and scalability. The specific context requirements for the management of a cloud data center are identified, and our context dissemination approach is applied to it. Additionally, an extensive evaluation of the framework in a large-scale cloud data center scenario was performed in order to characterize the benefits of our approach, in terms of scalability and reasoning time.

협업기반 상황인지를 위한 u-Surveillance 다중센서 스테이션 개발 (Development of Multi-Sensor Station for u-Surveillance to Collaboration-Based Context Awareness)

  • 유준혁;김희철
    • 제어로봇시스템학회논문지
    • /
    • 제18권8호
    • /
    • pp.780-786
    • /
    • 2012
  • Surveillance has become one of promising application areas of wireless sensor networks which allow for pervasive monitoring of concerned environmental phenomena by facilitating context awareness through sensor fusion. Existing systems that depend on a postmortem context analysis of sensor data on a centralized server expose several shortcomings, including a single point of failure, wasteful energy consumption due to unnecessary data transfer as well as deficiency of scalability. As an opposite direction, this paper proposes an energy-efficient distributed context-aware surveillance in which sensor nodes in the wireless sensor network collaborate with neighbors in a distributed manner to analyze and aware surrounding context. We design and implement multi-modal sensor stations for use as sensor nodes in our wireless sensor network implementing our distributed context awareness. This paper presents an initial experimental performance result of our proposed system. Results show that multi-modal sensor performance of our sensor station, a key enabling factor for distributed context awareness, is comparable to each independent sensor setting. They also show that its initial performance of context-awareness is satisfactory for a set of introductory surveillance scenarios in the current interim stage of our ongoing research.

보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법 (Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation)

  • 권오병
    • Asia pacific journal of information systems
    • /
    • 제19권3호
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.

지능형 서비스 로봇을 위한 온톨로지 기반의 동적 상황 관리 및 시-공간 추론 (Ontology-Based Dynamic Context Management and Spatio-Temporal Reasoning for Intelligent Service Robots)

  • 김종훈;이석준;김동하;김인철
    • 정보과학회 논문지
    • /
    • 제43권12호
    • /
    • pp.1365-1375
    • /
    • 2016
  • 일상생활 환경 속에서 자율적으로 동작하는 서비스 로봇에게 가장 필수적인 능력 중 하나가 동적으로 변화하는 주변 환경에 대한 올바른 상황 인식과 이해 능력이다. 다양한 센서 데이터 스트림들로 부터 신속히 의사 결정에 필요한 고수준의 상황 지식을 생성해내기 위해서는, 멀티 모달 센서 데이터의 융합, 불확실성 처리, 기호 지식의 실체화, 시간 의존성과 가변성 처리, 실시간성을 만족할 수 있는 시-공간 추론 등 많은 문제들이 해결되어야 한다. 이와 같은 문제들을 고려하여, 본 논문에서는 지능형 서비스 로봇을 위한 효과적인 동적 상황 관리 및 시-공간 추론 방법을 제시한다. 본 논문에서는 상황 지식 관리와 추론의 효율성을 극대화하기 위해, 저수준의 상황 지식은 센서 및 인식 데이터가 입력될 때마다 실시간적으로 생성되지만, 반면에 고수준의 상황 지식은 의사 결정 모듈에서 요구가 있을 때만 후향 시-공간 추론을 통해 유도되도록 알고리즘을 설계하였다. Kinect 시각 센서 기반의 Turtlebot를 이용한 실험을 통해, 제안한 방법에 기초한 동적 상황 관리 및 추론 시스템의 높은 효율성을 확인할 수 있었다.