Browse > Article
http://dx.doi.org/10.7840/kics.2017.42.2.514

Traffic Offloading Algorithm Using Social Context in MEC Environment  

Cheon, Hye-Rim (Ajou University Department of Elecrical and Computer Engineering)
Lee, Seung-Que (Electronics and Telecommunications Research Institute)
Kim, Jae-Hyun (Ajou University Department of Elecrical and Computer Engineering)
Abstract
Traffic offloading is a promising solution to solve the explosive growth of mobile traffic. One of offloading schemes, in LIPA/SIPTO(Local IP Access and Selected IP Traffic Offload) offloading, we can offload mobile traffic that can satisfy QoS requirement for application. In addition, it is necessary for traffic offloading using social context due to large traffic from SNS. Thus, we propose the LIPA/SIPTO offloading algorithm using social context. We define the application selection probability using social context, the application popularity. Then, we find the optimal offloading weighting factor to maximize the QoS(Quality of Service) of small cell users in term of effective data rate. Finally, we determine the offloading ratio by this application selection probability and optimal offloading weighting factor. By performance analysis, the effective data rate achievement ratio of the proposed algorithm is similar with the conventional one although the total offloading ratio of the proposed algorithm is about 46 percent of the conventional one.
Keywords
Small Cell; Traffic Offloading; Social Context; MEC; LTE-A;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015- 2020, Feb. 2016.
2 Mobile Data Traffic Surpasses Voice(2010), Retrieved April 13, 2016, from http://www.cellularnews.com/story/42543.php,
3 M. Cha, H. Kwak, P. Rodriguez, Y. Y. Ahn, and S. Moon, "I tube, you tube, everybody tubes: Analyzing the world's largest user generated content video system," in Proc. 7th ACM SIGCOMM IMC, pp. 1-14. San Diego, CA, USA, Oct. 2007,
4 H. M. Kim, H. N. Lee, and S. K. Kim, "Grouping resource allocation scheme for D2D communications," J. KICS, vol. 40, no. 8, pp. 1532-1541, Aug. 2015   DOI
5 A. Aijaz, H. Aghvami, and M. Amani, "A survey on mobile data offloading: Technical and business perspectives," IEEE Wirel. Commun., vol. 20, no. 2, pp. 104-112, Apr. 2013.   DOI
6 3GPP TR 23.829 V10.0.1, 3GPP technical specification group services and system aspects; local IP access and selected IP traffic offload, Oct. 2011.
7 S. Andreev, A. Pyattaev, K. Johnson, O. Galinina, and Y. Koucheryavy, "Cellular traffic offloading onto network-assisted device-to-device connections," IEEE Commun. Mag., vol. 52, no. 4, pp. 20-31, Apr. 2014.   DOI
8 Z. Wang and V. W. S. Wong, "A novel D2D data offloading scheme for LTE networks," in Proc. IEEE ICC 2015, pp. 3107-3112, London, UK, Jun. 2015
9 K. Lee, J. Lee, and Y. Yi, "Mobile data offloading: How much can WiFi deliver?," IEEE/ACM Trans. Networking, vol. 21, no. 2, pp. 536-550, Apr. 2013.   DOI
10 A. Y. Ding, B. Han, Y. Xiao, P. Hui, A. Srinivasan, M. Kojo, and S. Tarkoma, "Enabling energy-aware collaborative mobile data offloading for smartphones," in Proc. SECON 2013, pp. 487-495, New Orleans, USA, Jun. 2013
11 C. S. Yang and C. G. Kang, "QoS-Oriented user association in HetNet with a backhaul constraint," J. KICS, vol. 39, no. 10, pp. 654- 663, Oct. 2014.
12 L. Ma and W. Li, "Traffic offload mechanism in EPC based on bearer type," in Proc. WiCOM 2011, Wuhan, China, Sept. 2011.
13 K. Samdanis, T. Taleb, and S. Schmid, "Traffic offload enhancements for eUTRAN," IEEE Commun. Surveys & Tuts., vol. 14, no. 3, pp. 884-896, 3rd quarter, 2012.
14 ETSI, Mobile-edge computing-introductory technical white paper, Sept. 2014.
15 Small Cell Forum Release 7.0 Document 154.07.02, Virtualization in small cell networks, Jun. 2015.
16 H. K. Jung, S. Jung, D. H. Lee, S. Q. Lee, and J. H. Kim, "Wireless caching algorithm based on user's context in smallcell environments," J. KICS, vol. 41, no. 7, pp. 789-798, Jul. 2016   DOI
17 K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan, and Y Zhang, "Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks," IEEE Access, vol. 4, pp. 5896-5907, 2016.   DOI
18 T. L. Griffiths and Z. Ghahramani, "The indian buffet process: An introduction and review," J. Mach. Learn. Res., vol. 12, no. 4, pp. 1185-1224, Apr. 2011.
19 H. Tanaka, S. Tsukao, D. Yamashita, T. Niimura, and R. Yokoyama, "Multiple criteria assessment of substation conditions by pair-wise comparison of analytic hierarchy process," IEEE Trans. Power Delivery, vol. 25, no. 4, pp. 3017-3023, Oct. 2010.   DOI
20 H. R. Cheon, S. Q. Lee, and J. H. Kim, "New LIPA/SIPTO offloading algorithm by network condition and application QoS requirement," in Proc. ICTC 2015, pp. 191-196, Jeju Island, Korea, Oct. 2015.
21 B. Soelistijanto and M. Howarth, "Traffic distribution and network capacity analysis in social opportunistic networks," in Proc. WiMob 2012, pp. 823-830, Barcelona, Spain, Oct. 2012.
22 S. H. Kang and J. H. Kim, "QoS-aware path selection for multi-homed mobile terminals in heterogeneous wireless networks," in Proc. CCNC 2010, pp. 1-2, Las Vegas, Nevada, USA, Jan. 2010.
23 Cisco, Global Internet Speed Test (GIST) for iPhone, BlackBerry and Android, Retrieved April 13, 2016, from http://gistdata.ciscovni.com/
24 3GPP TS 23.203 V12.6.0, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Policy and charging control architecture(Release 12), Sept. 2014.