With advent of TV environment and increasing of variety of program contents, users are able to experience more various and complex environment for watching TV contents. According to the change of content watching environment, users have to make more efforts to choose his/her interested TV program contents or TV channels than before. Also, the users usually watch the TV program contents with their own regular way. So, in this paper, we suggests personalized TV program schedule recommendation system based on the analyzing users' TV watching history data. And we extract the users' watched program patterns using the sequential pattern mining method. Also, we proposed a new sequential pattern mining which is suitable for TV watching environment and verify our proposed method have better performance than existing sequential pattern mining method in our application area. In the future, we will consider a VoD characteristic for extending to IPTV program schedule recommendation system.
In order to secure the convenience of information retrieval by users of scientific information service platforms and to reduce the time required to acquire the proper information, this study proposes an optimized content recommendation algorithm among the algorithms that currently provide service menus and content information for each service, and conducts comparative evaluation on the results. To enhance the recommendation accuracy, users' major items were added to the original algorithm, and performance evaluations on the recommendation results from the original and optimized algorithms were performed. As a result of this evaluation, we found that the relevance of the content provided to the users through the optimized algorithm was increased by 21.2%. This study proposes a method to shorten the information acquisition time and extend the life cycle of the results as valuable information by automatically computing and providing content suitable for users in the system for each service menu.
Journal of the Korean Society for information Management
/
v.23
no.3
s.61
/
pp.91-125
/
2006
Recent advancements in information technology and the Internet have caused an explosive increase in the information available and the means to distribute it. However, such information overflow has made the efficient and accurate search of information a difficulty for most users. To solve this problem, an information retrieval and filtering system was developed as an important tool for users. Libraries and information centers have been in the forefront to provide customized services to satisfy the user's information needs under the changing information environment of today. The aim of this study is to propose an efficient information service for libraries and information centers to provide a personalized recommendation system to the user. The proposed method overcomes the weaknesses of existing systems, by providing a personalized hybrid recommendation method for multimedia contents that works in a large-scaled data and user environment. The system based on the proposed hybrid method uses an effective framework to combine Association Rule with Collaborative Filtering Method.
Kim, Jae-Kwon;Lee, Young-Ho;Kim, Jong-Hun;Park, Dong-Kyun;Kang, Un-Gu
Journal of the Korea Society of Computer and Information
/
v.17
no.8
/
pp.81-90
/
2012
For digital TV, the recommendation of u-health personalized service of semantic environment should be done after evaluating individual physical condition, illness and health condition. The existing recommendation method of u-health personalized service of semantic environment had low user satisfaction because its recommendation was dependent on ontology for analyzing significance. We propose the personalized service recommendation method based on Naive Bayesian Classifier for u-health service of semantic environment in digital TV. In accordance with the proposed method, the condition data is inferred by using ontology, and the transaction is saved. By applying naive bayesian classifier that uses preference information, the service is provided after inferring based on user preference information and transaction formed from ontology. The service inferred based on naive bayesian classifier shows higher precision and recall ratio of the contents recommendation rather than the existing method.
Multimedia recommendation systems analyze user preferences and recommend items(multimedia contents) to a user by predicting the user's preference for those items. Among various kinds of recommendation methods, collaborative filtering(CF) has been widely used and successfully applied to practical applications. However, collaborative filtering has two inherent problems: data sparseness and the cold-start problems. If there are few known preferences for a user, it is difficult to find many similar users, and therefore the performance of recommendation is degraded. This problem is more serious when a new user is first using the system. In this paper, we propose a method of generating additional feature of users and items into CF to overcome the difficulties caused by sparseness and improve the accuracy of recommendation. In our method, we first generate additional features by using the probability distribution of feature values, then recommend items by applying collaborative filtering on the modified data to include additional features. Several experimental results that show the effectiveness of the proposed method are also presented.
By the development of the network technology, the types and amount of information that users keep in contact with have been dramatically increased. As a result, users are consuming a lot of time and energy to find needed information. On this, this article presents a new methodology that can efficiently manage their information within small cost by using content-based recommendation method and keyword affinity method. By using keyword affinity method, this methodology solves the content-based recommendation method's weak point that the performance is not good within the environment that the preferences of users are rapidly changing and new contents are created continuously and the accuracy level is low until the information of preferences are sufficiently gathered. This article carried out research on the personal e-mail environment where new information is frequently created and disappeared. Also this article assists folder recommendation for the efficient management of e-mail and verified the methodology mentioned above by an experiment to compare the performance of existing folder recommendation methods with the performance of this new method.
KIPS Transactions on Software and Data Engineering
/
v.4
no.6
/
pp.269-276
/
2015
The today's rapid spread of smartphones makes it easier to use SNS. However, it reveals only their daily life or interest. Therefore, it is hard to really get to know the detailed part of multi-user's common interests. This paper proposes a content recommendation system which recommends people wanted by identifying common interests through SNS. Recommendation system includes proposal formula considering people wanted and deviation in group. After simulation, the proposed system provide high-quality adapted contents to many users by recommendation item according to the common interest. Number of cases about formula are four. It recommend contents that they have many number of 'like' and few number of deviation in users. The proposed system proves by simulations of four cases and read user's 'likes' data. It provide high-quality adapted contents to many users by recommendation item according to the common interest.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.8
/
pp.970-977
/
2020
The collaborative filtering recommendation technique has been the most widely used since the beginning of e-commerce companies introducing the recommendation system. As the online purchase of products or contents became an ordinary thing, however, recommendation simply applying purchasers' ratings led to the problem of low accuracy in recommendation. To improve the accuracy of recommendation, in this paper suggests the method of collaborative filtering that analyses product reviews and uses them as a weighted value. The proposed method refines product reviews with text mining to extract features and conducts sentiment analysis to draw a sentiment score. In order to recommend better items to user, sentiment weight is used to calculate the predicted values. The experiment results show that higher accuracy can be gained in the proposed method than the traditional collaborative filtering.
Since collaborative filtering has used the nearest-neighborhood method based on item preference it cannot only reflect exact contents but also has the problem of sparsity and scalability. The item-based collaborative filtering has been practically used improve these problems. However it still does not reflect attributes of the item. In this paper, we propose the method of associative group using the FP-Tree to solve the problem of existing recommendation system. The proposed makes frequent item and creates association rule by using FP-Tree without occurrence of candidate set. We made the efficient item group using $\alpha-cut$ according to the confidence of the association rule. To estimate the performance, the suggested method is compared with Gibbs Sampling, Expectation Maximization, and K-means in the MovieLens dataset.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.