• Title/Summary/Keyword: Contents Recommendation Method

Search Result 161, Processing Time 0.027 seconds

A Personalized Automatic TV Program Scheduler using Sequential Pattern Mining (순차 패턴 마이닝 기법을 이용한 개인 맞춤형 TV 프로그램 스케줄러)

  • Pyo, Shin-Jee;Kim, Eun-Hui;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.14 no.5
    • /
    • pp.625-637
    • /
    • 2009
  • With advent of TV environment and increasing of variety of program contents, users are able to experience more various and complex environment for watching TV contents. According to the change of content watching environment, users have to make more efforts to choose his/her interested TV program contents or TV channels than before. Also, the users usually watch the TV program contents with their own regular way. So, in this paper, we suggests personalized TV program schedule recommendation system based on the analyzing users' TV watching history data. And we extract the users' watched program patterns using the sequential pattern mining method. Also, we proposed a new sequential pattern mining which is suitable for TV watching environment and verify our proposed method have better performance than existing sequential pattern mining method in our application area. In the future, we will consider a VoD characteristic for extending to IPTV program schedule recommendation system.

Performance Evaluation of Recommendation Results through Optimization on Content Recommendation Algorithm Applying Personalization in Scientific Information Service Platform (과학 학술정보 서비스 플랫폼에서 개인화를 적용한 콘텐츠 추천 알고리즘 최적화를 통한 추천 결과의 성능 평가)

  • Park, Seong-Eun;Hwang, Yun-Young;Yoon, Jungsun
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.183-191
    • /
    • 2017
  • In order to secure the convenience of information retrieval by users of scientific information service platforms and to reduce the time required to acquire the proper information, this study proposes an optimized content recommendation algorithm among the algorithms that currently provide service menus and content information for each service, and conducts comparative evaluation on the results. To enhance the recommendation accuracy, users' major items were added to the original algorithm, and performance evaluations on the recommendation results from the original and optimized algorithms were performed. As a result of this evaluation, we found that the relevance of the content provided to the users through the optimized algorithm was increased by 21.2%. This study proposes a method to shorten the information acquisition time and extend the life cycle of the results as valuable information by automatically computing and providing content suitable for users in the system for each service menu.

A Study on Hybrid Recommendation System Based on Usage frequency for Multimedia Contents (멀티미디어 콘텐츠를 위한 이용빈도 기반 하이브리드 추천시스템에 관한 연구)

  • Kim, Yong;Moon, Sung-Been
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.3 s.61
    • /
    • pp.91-125
    • /
    • 2006
  • Recent advancements in information technology and the Internet have caused an explosive increase in the information available and the means to distribute it. However, such information overflow has made the efficient and accurate search of information a difficulty for most users. To solve this problem, an information retrieval and filtering system was developed as an important tool for users. Libraries and information centers have been in the forefront to provide customized services to satisfy the user's information needs under the changing information environment of today. The aim of this study is to propose an efficient information service for libraries and information centers to provide a personalized recommendation system to the user. The proposed method overcomes the weaknesses of existing systems, by providing a personalized hybrid recommendation method for multimedia contents that works in a large-scaled data and user environment. The system based on the proposed hybrid method uses an effective framework to combine Association Rule with Collaborative Filtering Method.

Semantics Environment for U-health Service driven Naive Bayesian Filtering for Personalized Service Recommendation Method in Digital TV (디지털 TV에서 시멘틱 환경의 유헬스 서비스를 위한 나이브 베이지안 필터링 기반 개인화 서비스 추천 방법)

  • Kim, Jae-Kwon;Lee, Young-Ho;Kim, Jong-Hun;Park, Dong-Kyun;Kang, Un-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.8
    • /
    • pp.81-90
    • /
    • 2012
  • For digital TV, the recommendation of u-health personalized service of semantic environment should be done after evaluating individual physical condition, illness and health condition. The existing recommendation method of u-health personalized service of semantic environment had low user satisfaction because its recommendation was dependent on ontology for analyzing significance. We propose the personalized service recommendation method based on Naive Bayesian Classifier for u-health service of semantic environment in digital TV. In accordance with the proposed method, the condition data is inferred by using ontology, and the transaction is saved. By applying naive bayesian classifier that uses preference information, the service is provided after inferring based on user preference information and transaction formed from ontology. The service inferred based on naive bayesian classifier shows higher precision and recall ratio of the contents recommendation rather than the existing method.

A Feature Generation Method for Multimedia Recommendation System (멀티미디어 추천시스템을 위한 속성 생성 기법)

  • Kim, Hyung-Il;Eom, Jeong-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.2
    • /
    • pp.257-268
    • /
    • 2008
  • Multimedia recommendation systems analyze user preferences and recommend items(multimedia contents) to a user by predicting the user's preference for those items. Among various kinds of recommendation methods, collaborative filtering(CF) has been widely used and successfully applied to practical applications. However, collaborative filtering has two inherent problems: data sparseness and the cold-start problems. If there are few known preferences for a user, it is difficult to find many similar users, and therefore the performance of recommendation is degraded. This problem is more serious when a new user is first using the system. In this paper, we propose a method of generating additional feature of users and items into CF to overcome the difficulties caused by sparseness and improve the accuracy of recommendation. In our method, we first generate additional features by using the probability distribution of feature values, then recommend items by applying collaborative filtering on the modified data to include additional features. Several experimental results that show the effectiveness of the proposed method are also presented.

  • PDF

Folder Recommendation Based on User Knowledge (사용자 지식을 반영한 메일 폴더 추천 방법론)

  • You Mee;Park Joo Seok;Kim Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.3
    • /
    • pp.133-146
    • /
    • 2004
  • By the development of the network technology, the types and amount of information that users keep in contact with have been dramatically increased. As a result, users are consuming a lot of time and energy to find needed information. On this, this article presents a new methodology that can efficiently manage their information within small cost by using content-based recommendation method and keyword affinity method. By using keyword affinity method, this methodology solves the content-based recommendation method's weak point that the performance is not good within the environment that the preferences of users are rapidly changing and new contents are created continuously and the accuracy level is low until the information of preferences are sufficiently gathered. This article carried out research on the personal e-mail environment where new information is frequently created and disappeared. Also this article assists folder recommendation for the efficient management of e-mail and verified the methodology mentioned above by an experiment to compare the performance of existing folder recommendation methods with the performance of this new method.

  • PDF

Extraction Method of Multi-User's Common Interests Using Facebook's 'like' List (페이스북의 '좋아요' 리스트를 이용해 다중 공통 관심사항을 추출하는 기법)

  • Lim, Yeonju;Park, Sangwon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.6
    • /
    • pp.269-276
    • /
    • 2015
  • The today's rapid spread of smartphones makes it easier to use SNS. However, it reveals only their daily life or interest. Therefore, it is hard to really get to know the detailed part of multi-user's common interests. This paper proposes a content recommendation system which recommends people wanted by identifying common interests through SNS. Recommendation system includes proposal formula considering people wanted and deviation in group. After simulation, the proposed system provide high-quality adapted contents to many users by recommendation item according to the common interest. Number of cases about formula are four. It recommend contents that they have many number of 'like' and few number of deviation in users. The proposed system proves by simulations of four cases and read user's 'likes' data. It provide high-quality adapted contents to many users by recommendation item according to the common interest.

Item-Based Collaborative Filtering Recommendation Technique Using Product Review Sentiment Analysis (상품 리뷰 감성분석을 이용한 아이템 기반 협업 필터링 추천 기법)

  • Yun, So-Young;Yoon, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.970-977
    • /
    • 2020
  • The collaborative filtering recommendation technique has been the most widely used since the beginning of e-commerce companies introducing the recommendation system. As the online purchase of products or contents became an ordinary thing, however, recommendation simply applying purchasers' ratings led to the problem of low accuracy in recommendation. To improve the accuracy of recommendation, in this paper suggests the method of collaborative filtering that analyses product reviews and uses them as a weighted value. The proposed method refines product reviews with text mining to extract features and conducts sentiment analysis to draw a sentiment score. In order to recommend better items to user, sentiment weight is used to calculate the predicted values. The experiment results show that higher accuracy can be gained in the proposed method than the traditional collaborative filtering.

Method of Associative Group Using FP-Tree in Personalized Recommendation System (개인화 추천 시스템에서 FP-Tree를 이용한 연관 군집 방법)

  • Cho, Dong-Ju;Rim, Kee-Wook;Lee, Jung-Hyun;Chung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.10
    • /
    • pp.19-26
    • /
    • 2007
  • Since collaborative filtering has used the nearest-neighborhood method based on item preference it cannot only reflect exact contents but also has the problem of sparsity and scalability. The item-based collaborative filtering has been practically used improve these problems. However it still does not reflect attributes of the item. In this paper, we propose the method of associative group using the FP-Tree to solve the problem of existing recommendation system. The proposed makes frequent item and creates association rule by using FP-Tree without occurrence of candidate set. We made the efficient item group using $\alpha-cut$ according to the confidence of the association rule. To estimate the performance, the suggested method is compared with Gibbs Sampling, Expectation Maximization, and K-means in the MovieLens dataset.