• Title/Summary/Keyword: Contents Factor

Search Result 3,112, Processing Time 0.028 seconds

Effects of AI-Based Personalized Adaptive Learning System in Higher Education (인공지능 기반으로 맞춤 및 적응형 학습 시스템의 고등 교육에서의 적용효과)

  • Cho, Yooncheong
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.4
    • /
    • pp.249-263
    • /
    • 2022
  • The purpose of this study is to investigate the effects of assessment by adopting adaptive learning in higher education that are rarely examined in previous studies. In particular, this study applied research questions: 1) How does technical perception, perceived contents and features, and perceived integration of the AI-based adaptive system with lecture affect overall satisfaction, overall effectiveness, overall usefulness, overall motivation for the study, and intention to use it with other classes? 2) How do overall satisfaction, overall effectiveness, overall usefulness, motivation for the class, and intention to use affect loyalty on the AI-based adaptive system? This study conducted online surveys after the completion of the classes adopted AI-based adaptive learning system, ALEKS. This study applied ANOVA, regression, and factor analyses. The results of this study found that perceived integration of the AI-based adaptive learning system with the lectures on overall satisfaction, effectiveness, motivation, and intention to use for other classes showed significant with higher effect size. The results of this study provides implication that the AI-based learning system help improve learning outcomes in graduate level studies. The results provide policy and managerial implications that the AI-based adaptive learning system should improve better customer relationships in higher education.

Anti-inflammatory Effects of Houttuynia cordata and Lespedeza cuneata on Lipopolysaccharide-stimulated RAW264.7 Cells (마우스 대식세포 RAW264.7에서 어성초와 야관문의 항염증 효과)

  • Jeong Tae Kim;Chungwook Chung;Seong Ik Park;Man Hyo Lee;Joong Hee Roh;Ho Yong Sohn;Jong Sik Kim
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • In the present study, we prepared hot water extracts and the subsequent organic solvent fractions of methanol extracts of Houttuynia cordata (HC) and Lespedeza cuneata (LC), and investigated their anti-inflammatory effects on lipopolysaccharide-stimulated RAW264.7 cells. Among the treated samples, hexane, chloroform, and ethyl-acetate fractions of HC and LC inhibited nitric oxide (NO) production in a dose-dependent manner, and decreased inducible nitric oxide synthase (iNOS) protein expression. And, we analyzed the flavonoid contents of the ethyl-acetate fraction of HC and LC, and chose apigenin for the further experiments because apigenin was one of flavonoids commonly found in HC and LC. Apigenin dramatically inhibited NO production in a dose-dependent manner without affecting cell viability and decreased iNOS and cyclooxygenase-2 (COX-2) expression. In addition, apigenin suppressed the phosphorylation of p38 and Jun N-terminal kinase (JNK) indicating that apigenin exerts anti-inflammatory activity via the mitogen-activated protein kinase (MAPK) signaling pathway. Subsequently, we conducted RNA-sequencing analysis to detect differentially expressed genes upon apigenin treatment. Among the down-regulated genes, four cytokine genes (interleukin (IL)-1α, IL-1β, IL-6, and colony stimulating factor 2 (CSF2)) were selected for the further analysis, and the reduction of their expression by apigenin was confirmed with quantitative real-time polymerase chain reaction. Overall, our results suggest that Houttuynia cordata and Lespedeza cuneata have the anti-inflammatory effects and apigenin can be the one of key molecules responsible for their anti-inflammatory activities.

Ecological Niche Overlap Between Quercus acutissima and Q. dentata with Soil Moisture and Nutrient Gradients (상수리나무와 떡갈나무의 수분과 영양소 구배에 따른 생태지위 중복역)

  • Kyeong Mi Cho;Ara Seol;Yoon Kyung Choi;Se Hee Kim;Eui Joo Kim;Yoon Seo Kim;Jung Min Lee;Ju Seon Lee;Gyu Ri Kim;Ji Won Park;Jae Hoon Park;Young Han You
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.159-165
    • /
    • 2023
  • This study measured the ecological niche overlap between two deciduous oak species(Quercus acutissmia and Q. dentata) according to the change in growth responses after treating with the moisture and nutrient contents of the soil at four gradients, and interpreted the degree of competition between the two oak species by ordination method. In the moisture environment gradient, the ecological niche overlap of the two species was high in the photosynthesis-related leaf organs and low in plant architecture such as shoot length. In addition, in case of competition between two oaks, Q. dentata was remarkably dominant in soil moisture gradient, but Q. acutissimia slightly was slightly advantageous over Q. dentata in the soil nutrient gradient. These results show that even in a similar taxonomical group growing in a similar habitat, the response to the organ system of the plant varies depending on the type of environment factor, resulting in different competitive differences among plants.

A Study on the Numerical Analysis Methods for Predicting Strength Test Result of Box Girder under Bending Moment (휨 모멘트를 받는 박스거더 구조 강도 실험에 대한 수치해석 방법에 관한 연구)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.488-496
    • /
    • 2023
  • Ship and bridge structures are a type of long box-shaped structure, and resistance to vertical bending moment is a key factor in their structural design. In particular, because box girders are repeatedly exposed to irregular wave loads for a long time, the continuous collapse behavior of structural members must be accurately predicted. In this study, plastic collapse behavior, including buckling according to load changes of the box girder receiving pure bending moments, was analyzed using a numerical analysis method. The analysis targets were selected as three box girders used in the Gordo experiment. The cause of the difference was considered by comparing the results of the structural strength experiment with those of non-linear finite element analysis. This study proposed a combination of the entire and local sagging shape to reflect the effect of the initial sagging caused by welding heat that is inevitably used to manufacture carbon steel materials. The procedures reviewed in the study and the contents of the initial sagging configuration can be used as a good guide for analyzing the final strength of similar structures in the future.

Yield Formations of Sesame(Sesamum indicum L.) as Affected by Different Conditions of Soil Drainage (토양의 배수조건 차이가 참깨 수량성에 미치는 영향)

  • Choi, H.K.;Goo, J.O.;Kim, Y.Z.;Lee, D.G.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.276-282
    • /
    • 1982
  • To estimate the responses of sesame plant in growth and yielding traits to different soil drainage conditions, a pot trial was conducted by using of sesame variety "Suweon-9" were introduced with 5 different mixing combinations of clay and sea-sand soils as 0:100, 25:75, 50:50, 75:25, and 100:0 percents in volumetric ratio. Also two irrigation methods as 20mm/6 days interval and 10mm/3 days interval were detected. As a result, water drainage was linearly decreased with increament of clay contents. And the excess drainage condition(such as pure sand soil) required more irrigation, however in crop growths, no significant differences among various soil drainage conditions except the pure sand were recognized. On the other hand, number of capsules per plant, among other yielding components, was most contributed factor to the yield, which was effectively given from the soil mixed with clay and sea-sand as 75% and 25%, respectively. Therefore, much similar responses were also detected from the seed yields per a sesame plant. However, the number of seeds per capsule and maturity function were more effectively composed under the soil mixed with clay and sea-sand as 25% and 75% respectively better than under the soil of 75% and 25%. As a conclusion, the yielding responses of sesame plant was advanced more effectively at the soil conditions of water conserved type (e.g. 25%/75% in clay/sand ratio) than of water-draining type (e.g. 75%/25% in clay/sand ratio).nd ratio).

  • PDF

The responsibility of C-terminal domain in the thermolabile haemolysin activity of Vibrio parahaemolyticus and inhibition treatments by Phellinus sp. extracts

  • Tran Thi Huyen;Ha Phuong Trang;Nguyen Thi-Ngan;Bui Dinh-Thanh;Le Pham Tan Quoc;Trinh Ngoc Nam
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.3
    • /
    • pp.204-215
    • /
    • 2023
  • The thermolabile haemolysin (tlh) of Vibrio parahaemolyticus (Vptlh) from V. parahaemolyticus is a multiple-function enzyme, initially describes as a haemolytic factor activated by lecithin and phospholipase A2 enzymatic activity (Shinoda, 1991; Vazquez-Morado, 2021; Yanagase et al., 1970). Until now, the tlh structure has hypothesized including N-terminal and C-terminal domain, but what domain of the Vptlh structure does the haemolytic activity has not been refined yet. In this study, a 450-bp VpTLH nucleotide sequence of the entire Vptlh gene encoded the C-terminal domain cloned firstly to examine its responsibility in the activity of the Vptlh. The C-terminal domain fused with a 6-His-tag named the His-tag-VpC-terminal domain was expressed successfully in soluble form in the BL21 (DE3) PlysS cell. Remarkably, both expression and purification results confirmed a high agreement in the molecular weight of the His-tag-VpC-terminal domain was 47 kDa. This work showed the His-tag-VpC-terminal domain lysed the erythrocyte membranes in the blood agar and the phosphate buffered saline (0.9%) media without adding the lecithin substrate of the phospholipase enzyme. Haemolysis occurred at all tested diluted concentrations of His-tag-VpC-terminal domain (p < 0.05), providing evidence for the independent haemolytic activity of the His-tag-VpC-terminal domain. The content of 100 ㎍ of the His-tag-VpC-terminal domain brought the highest haemolytic activity of 80% compared to that in the three remaining contents. Significantly, the His-tag-VpC-terminal domain demonstrated not to involve the phospholipase activity in Luria-Bertani agar supplemented with 1% (vol/vol) egg yolk emulsion. All results proved the vital responsibility of the His-tag-VpC-terminal domain in causing the haemolytic activity without the required activation by the phospholipase enzyme. Raw extracts of Phellinus igniarus and Phellinus pipi at 10-1 mg/mL inhibited the haemolytic activity of the His-tag-VpC-terminal domain from 67.7% to 87.42%, respectively. Hence applying the His-tag-VpC-terminal domain as a simple biological material to evaluate quickly potential derivatives against the Vptlh in vivo conditions will accessible and more advantageous than using the whole of the Vptlh.

Sustained release of alginate hydrogel containing antimicrobial peptide Chol-37(F34-R) in vitro and its effect on wound healing in murine model of Pseudomonas aeruginosa infection

  • Shuaibing Shi;Hefan Dong;Xiaoyou Chen;Siqi Xu;Yue Song;Meiting Li;Zhiling Yan ;Xiaoli Wang ;Mingfu Niu ;Min Zhang;Chengshui Liao
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.44.1-44.17
    • /
    • 2023
  • Background: Antibiotic resistance is a significant public health concern around the globe. Antimicrobial peptides exhibit broad-spectrum and efficient antibacterial activity with an added advantage of low drug resistance. The higher water content and 3D network structure of the hydrogels are beneficial for maintaining antimicrobial peptide activity and help to prevent degradation. The antimicrobial peptide released from hydrogels also hasten the local wound healing by promoting epithelial tissue regeneration and granulation tissue formation. Objective: This study aimed at developing sodium alginate based hydrogel loaded with a novel antimicrobial peptide Chol-37(F34-R) and to investigate the characteristics in vitro and in vivo as an alternative antibacterial wound dressing to treat infectious wounds. Methods: Hydrogels were developed and optimized by varying the concentrations of crosslinkers and subjected to various characterization tests like cross-sectional morphology, swelling index, percent water contents, water retention ratio, drug release and antibacterial activity in vitro, and Pseudomonas aeruginosa infected wound mice model in vivo. Results: The results indicated that the hydrogel C proved superior in terms of cross-sectional morphology having uniformly sized interconnected pores, a good swelling index, with the capacity to retain a higher quantity of water. Furthermore, the optimized hydrogel has been found to exert a significant antimicrobial activity against bacteria and was also found to prevent bacterial infiltration into the wound site due to forming an impermeable barrier between the wound bed and external environment. The optimized hydrogel was found to significantly hasten skin regeneration in animal models when compared to other treatments in addition to strong inhibitory effect on the release of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). Conclusions: Our results suggest that sodium alginate -based hydrogels loaded with Chol-37(F34-R) hold the potential to be used as an alternative to conventional antibiotics in treating infectious skin wounds.

The Interference of Organic Matter in the Characterization of Aquifers Contaminated with LNAPLs by Partitioning Tracer Method (LNAPLs 오염 지반에 분배성 추적자 시험법 적용 시 유기물질의 영향에 관한 연구)

  • Khan, Sherin Momand;Rhee, Sung-Su;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.9
    • /
    • pp.13-21
    • /
    • 2008
  • Partitioning tracer method is a useful tool to characterize large domains of the aquifers contaminated with light nonaqueous phase liquids (LNAPLs). Sorption of the partitioning tracers to the organic matter content of soil can potentially influence the efficacy of partitioning tracer method. LNAPL-water partitioning coefficients of tracers ($K_{nw}$), measured by static method, showed linear relationship. Sorption isotherm tests were conducted to evaluate the sorption capacity of the soils packed in the columns and the results were appropriately represented by Freundlich sorption isotherm. The sorption of tracers proportionally increased with the increase of the organic matter content of the soil. Laboratory experiments were conducted in four columns each packed with soils of different organic matter contents to determine the potential interference effects of sorption to soil organic matter content and correction factors for the errors in estimation of LNAPLs by partitioning tracer method. Though there were no contaminants added, breakthrough curves from columns packed with mixture of Jumunjin standard sand and organic matter showed separation of tracers. Columns were then contaminated to residual saturation with kerosene and breakthrough curves were obtained. The results show that sorption of tracers to soil organic matter leads to an increase in the retardation factor (R) and hence, to an overestimation of the saturation of LNAPLs. A relation between the percentage of organic matter content and the corresponding percentage error in the estimation of NAPLs has been developed.

Physiological response of red macroalgae Pyropia yezoensis (Bangiales, Rhodophyta) to light quality: a short-term adaptation

  • Xuefeng Zhong;Shuai Che;Congying Xie;Lan Wu;Xinyu Zhang;Lin Tian;Chan Liu;Hongbo Li;Guoying Du
    • ALGAE
    • /
    • v.38 no.2
    • /
    • pp.141-150
    • /
    • 2023
  • Light quality is a common environmental factor which influences the metabolism of biochemical substances in algae and leads to the response of algal growth and development. Pyropia yezoensis is a kind of economic macroalgae that naturally grows in the intertidal zone where the light environment changes dramatically. In the present study, P. yezoensis thalli were treated under white light (control) and monochromatic lights with primary colors (blue, green, and red) for 14 days to explore their physiological response to light quality. During the first 3 days of treatment, P. yezoensis grew faster under blue light than other light qualities. In the next 11 days, it showed better adaptation to green light, with higher growth rate and photosynthetic capacity (reflected by a higher rETRmax = 61.58 and Ek = 237.78). A higher non-photochemical quenching was observed in the treatment of red light than others for 14 days. Furthermore, the response of P. yezoensis to light quality also results in the difference of photosynthetic pigment contents. The monochromatic light could reduce the synthesis of all pigments, but the reduction degree was different, which may relate to the spectral absorption characteristics of pigments. It was speculated that P. yezoensis adapted to a specific or changing light environments by regulating the synthesis of pigments to achieve the best use of light energy in photosynthesis and premium growth and metabolism.

Temperature Effect on the Growth and Odorous Material (2-MIB) Production of Pseudanabaena redekei (온도가 남조류 Pseudanabaena redekei의 성장과 냄새물질(2-MIB) 생산에 미치는 영향)

  • Jaehyun Kim;Keonhee Kim;Chaehong Park;Hyunjin Kim;Soon-Jin Hwang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.2
    • /
    • pp.151-160
    • /
    • 2023
  • Cyanobacteria Pseudanabaena strains are known to produce 2-MIB(odorous material) in freshwater systems, thereby causing problems in water use. However, their physiological responses to environmental factors in relation with 2-MIB production is not well explored. This study was conducted to evaluate the effect of temperature on the growth and 2-MIB production of Pseudanabaena redekei. The experimental cyanobacteria strains were separated from the Uiam Reservoir (North Han River) and cultured in the BG-11 medium. Temperature was set to 10, 15, 20, 25, and 30℃ for the experiment, in the reflection of the seasonal water temperature variation in situ. For each temperature treatment, cyanobacterial biomass(Chl-a) and 2-MIB concentration (intra-cellular and extra-cellular fractions) were measured every 2 days for 18 days. Both maximal growth and total 2-MIB production of P. redekei appeared at 30℃. While intra-cellular 2-MIB contents were similar (26~29 ng L-1) regardless of treated temperatures, extra-cellular 2-MIB concentration was higher only in high temperature conditions (25~30℃), indicating that the extents of 2-MIB biosynthesis and release by P. redekei vary with temperature. The 2-MIB productivity of P. redekei was much higher in low-temperature conditions (10~15℃) than high temperature conditions (25~30℃). This study demonstrated that temperature was a critical factor contributing to 2-MIB biosynthesis and its release in cell growth (r=0.605, p<0.01). These results are important to understand the dynamics of 2-MIB in the field and thereby provide basic information for managing odorous material in drinking water resources.