• 제목/요약/키워드: Content-based image retrieval

검색결과 448건 처리시간 0.03초

의미 기반 검색을 위한 이미지 내용 모델링 (Image Content Modeling for Meaning-based Retrieval)

  • 나연묵
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권2호
    • /
    • pp.145-156
    • /
    • 2003
  • 현존하는 대부분의 내용 기반 이미지 검색 시스템은 칼라, 모양, 텍스처 특징을 이용한 유사도-기반 검색에 초점을 맞추고 있다. 신경과학 이미지 데이타베이스의 경우, 이미지에 대한 전역적 평균 특징 값을 기반으로 한 유사 이미지의 검색이 임상 병리학자들에게는 전혀 도움이 되지 않는 다는 것을 발견하였다. 신경과학 데이터베이스 상의 이미지에 대한 실용적인 내용 기반 검색을 실현하기 위해서는 이미지의 내부 내용이나 의미를 표현하는 일이 필요하다. 본 논문에서는 이러한 이미지들에 대해 보다 유용한 검색을 지원하기 위하여 이미지 내용과 그에 관련된 개념 지식을 표현하는 방법을 제시한다. 또한 객체지향 메시지 경로 식을 이용하여 이러한 고급 검색을 지원하기 위한 연산의 의미를 기술한다. 제안된 기법은 유연하고 확장 가능하므로 보다 강화된 내용 검색을 위해 이미지 내용에 대한 보다 많은 의미를 점진적으로 추가해 나갈 수 있다.

A Self-selection of Adaptive Feature using DCT

  • Lim, Seung-in
    • 한국컴퓨터정보학회논문지
    • /
    • 제5권3호
    • /
    • pp.215-219
    • /
    • 2000
  • The purpose of this paper is to propose a method to maximize the efficiency of a content-based image retrieval for various kinds of images. This paper discuss the self-adaptivity for the change of image domain and the self-selection of optimal features for query image, and present the efficient method to maximize content-based retrieval for various kinds of images. In this method, a content-based retrieval system is adopted to select automatically distinctive feature patterns which have a maximum efficiency of image retrieval in various kinds of images. Experimental results show that the Proposed method is improved 3% than the method using individual features.

  • PDF

An approach for improving the performance of the Content-Based Image Retrieval (CBIR)

  • Jeong, Inseong
    • 한국측량학회지
    • /
    • 제30권6_2호
    • /
    • pp.665-672
    • /
    • 2012
  • Amid rapidly increasing imagery inputs and their volume in a remote sensing imagery database, Content-Based Image Retrieval (CBIR) is an effective tool to search for an image feature or image content of interest a user wants to retrieve. It seeks to capture salient features from a 'query' image, and then to locate other instances of image region having similar features elsewhere in the image database. For a CBIR approach that uses texture as a primary feature primitive, designing a texture descriptor to better represent image contents is a key to improve CBIR results. For this purpose, an extended feature vector combining the Gabor filter and co-occurrence histogram method is suggested and evaluated for quantitywise and qualitywise retrieval performance criterion. For the better CBIR performance, assessing similarity between high dimensional feature vectors is also a challenging issue. Therefore a number of distance metrics (i.e. L1 and L2 norm) is tried to measure closeness between two feature vectors, and its impact on retrieval result is analyzed. In this paper, experimental results are presented with several CBIR samples. The current results show that 1) the overall retrieval quantity and quality is improved by combining two types of feature vectors, 2) some feature is better retrieved by a specific feature vector, and 3) retrieval result quality (i.e. ranking of retrieved image tiles) is sensitive to an adopted similarity metric when the extended feature vector is employed.

Interactive Genetic Algorithm for Content-based Image Retrieval

  • Lee, Joo-Young;Cho, Sung-Bae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.479-484
    • /
    • 1998
  • As technology in a computer hardware and software advances, efficient information retrieval from multimedia database gets highly demanded. Recently, it has been actively exploited to retrieve information based on the stored contents. However, most of the methods emphasize on the points which are far from human intuition or emotion. In order to overcome this shortcoming , this paper attempts to apply interactive genetic algorithm to content-based image retrieval. A preliminary result with subjective test shows the usefulness of this approach.

  • PDF

JPEG2000기반 검색 알고리즘 개발 (Development to Image Search Algorithm for JPEG2000)

  • 조재훈;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제6권2호
    • /
    • pp.53-57
    • /
    • 2007
  • In this paper, a new content-based color image retrieval method is proposed, in which both the color content and the spatial relationship of image have been taken into account. In order to represent the spatial distribution information of image, a disorder matrix, which has the invariance to the rotation and translation of the image content, has been designed. This is based on multi-resolution color-spatial information. We present our algorithm in the following section, and then verified the search results with comparison to other methods, such as color histogram, wavelet histogram, correlogram and wavelet correlogram. Experimental results with various types of images show that the proposed method not only achieves a high image retrieval performance but also improve the retrieval precision.

  • PDF

영상편집효과를 고려한 내용기반 영상 검색의 개선에 관한 연구 (Improvement of Content-based Image Retrieval by Considering Image Editing Effect)

  • 강석준;배태면;김기현;한승완;정치윤;남택용;노용만
    • 한국멀티미디어학회논문지
    • /
    • 제9권5호
    • /
    • pp.564-575
    • /
    • 2006
  • 멀티미디어 컨텐츠가 급격히 증가함에 따라 사용자들은 다양한 유통 경로를 통하여 많은 멀티미디어 컨텐츠를 이용할 수 있게 되었다. 내용기반 영상 검색시스템은 영상 데이터의 내용을 다양한 시각적 특정 값들로 표현하여, 수많은 영상 중에서 사용자가 원하는 영상을 검색하고 원하지 않는 영상을 필터링 하도록 한다. 그러나 멀티미디어 데이터의 편집은 영상 데이터의 고유한 시각적 특정 값들을 왜곡시켜 잘못된 검색 결과나 필터링 결과를 제공하여 내용기반 영상 검색시스템의 성능을 저하시킨다. 본 논문에서는 이러한 영상편집효과 가운데 글자삽입, 프레임의 삽입, 그리고 여러 영상으로의 구성과 같은 편집효과에 대해 분석하고 이러한 편집효과를 제거하는 알고리즘을 고려한 내용기반 검색시스템을 제안하였으며, 실험을 통해 향상된 검색 결과를 확인할 수 있었다.

  • PDF

Genetic Algorithm based Relevance Feedback for Content-based Image Retrieval

  • Seo, Kwang-Kyu
    • 반도체디스플레이기술학회지
    • /
    • 제7권4호
    • /
    • pp.13-18
    • /
    • 2008
  • This paper explores a content-based image retrieval framework with relevance feedback based on genetic algorithm (GA). This framework adopts GA to learn the user preferences using the similarity functions defined for all available descriptors. The objective of the GA-based learning methods is to learn the user preferences using the similarity functions and to find a descriptor combination function that best represents the user perception. Experiments were performed to validate the proposed frameworks. The experiments employed the natural image databases and color and texture descriptors to represent the content of database images. The proposed frameworks were compared with the other two relevance feedback methods regarding effectiveness in image retrieval tasks. Experiment results demonstrate the superiority of the proposed method.

  • PDF

Efficient Content-Based Image Retrieval Methods Using Color and Texture

  • Lee, Sang-Mi;Bae, Hee-Jung;Jung, Sung-Hwan
    • ETRI Journal
    • /
    • 제20권3호
    • /
    • pp.272-283
    • /
    • 1998
  • In this paper, we propose efficient content-based image retrieval methods using the automatic extraction of the low-level visual features as image content. Two new feature extraction methods are presented. The first one os an advanced color feature extraction derived from the modification of Stricker's method. The second one is a texture feature extraction using some DCT coefficients which represent some dominant directions and gray level variations of the image. In the experiment with an image database of 200 natural images, the proposed methods show higher performance than other methods. They can be combined into an efficient hierarchical retrieval method.

  • PDF

내용기반 이미지 검색을 위한 MPEG-7 우위컬러 기술자의 효과적인 유사도 (An Effective Similarity Measure for Content-Based Image Retrieval using MPEG-7 Dominant Color Descriptor)

  • 이종원;낭종호
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권8호
    • /
    • pp.837-841
    • /
    • 2010
  • 본 논문에서는 MPEG-7 DCD를 이용하여 내용기반 이미지 검색을 할 때 적합한 유사도 측정 방법을 제안한다. 제안한 방법은 이미지에서 추출한 도미넌트 컬러의 비율에 따라 유사도를 측정할 수 있도록 하였다. 실험결과 제안한 방법은 MPEG-7 DCD의 QHDM[1]에 의한 검색결과보다 전역 DCD를 사용할 경우 ANMRR이 18.9%의 성능향상을 보였으며 블록별 DCD를 사용할 경우 47.2%라는 높은 성능향상을 보였다. 이는 제안한 방법이 DCD를 이용하여 내용기반 이미지 검색을 할 때 효과적인 유사도 측정 방법임을 보여준다. 특히, 영역 기반의 이미지 검색 방법에 유용하게 적용할 수 있을 것으로 보인다.

영역의 컬러특징과 적응적 컬러 히스토그램 빈 매칭 방법을 이용한 내용기반 영상검색 (Content-Based Image Retrieval using Color Feature of Region and Adaptive Color Histogram Bin Matching Method)

  • 박정만;유기형;장세영;한득수;곽훈성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.364-366
    • /
    • 2005
  • From the 90's, the image information retrieval methods have been on progress. As good examples of the methods, Conventional histogram method and merged-color histogram method were introduced. They could get good result in image retrieval. However, Conventional histogram method has disadvantages if the histogram is shifted as a result of intensity change. Merged-color histogram, also, causes more process so, it needs more time to retrieve images. In this paper, we propose an improved new method using Adaptive Color Histogram Bin Matching(AHB) in image retrieval. The proposed method has been tested and verified through a number of simulations using hundreds of images in a database. The simulation results have Quickly yielded the highly accurate candidate images in comparison to other retrieval methods. We show that AHB's can give superior results to color histograms for image retrieval.

  • PDF