최근 스마트 기기의 보급으로 자유롭게 비디오 컨텐츠를 생성하고 이를 빠르고 편리하게 공유할 수 있는 네트워크 환경이 갖추어지면서, 퍼스널 비디오가 급증하고 있다. 그러나, 퍼스널 비디오는 비디오라는 특성 상 멀티 모달리티로 구성되어 있으면서 데이터가 시간의 흐름에 따라 변화하기 때문에 이벤트 분류를 할 때 이에 대한 고려가 필요하다. 본 논문에서는 비디오 내의 멀티 모달리티들로부터 고수준의 특징을 추출하여 시간 순으로 재배열한 것을 바탕으로 모달리티 사이의 연관관계를 Deep Neural Network(DNN)으로 학습하여 퍼스널 비디오 이벤트를 분류하는 방법을 제안한다. 제안하는 방법은 비디오에 내포된 이미지와 오디오를 시간적으로 동기화하여 추출한 후 GoogLeNet과 Multi-Layer Perceptron(MLP)을 이용하여 각각 고수준 정보를 추출한다. 그리고 이들을 비디오에 표현된 시간순으로 재 배열하여 비디오 한 편당 하나의 특징으로 재 생성하고 이를 바탕으로 학습한 DNN을 이용하여 퍼스널 비디오 이벤트를 분류한다.
본 논문에서는 그동안 부분적으로 진행된 발달장애 진단 평가에 관련된 전산처리를 멀티미디어 기법을 응용하여 발달장애 진단 평가분야에 새로운 방법을 제시한다. 발달장애 진단 평가를 위한 멀티미디어 정보는 여러 가지 속성을 지니고 있기 때문에 모든 발달장애 진단 평가 정보에 대한 기술을 사람이 수행해야 할 때는 엄청난 작업량이 수반될 뿐 아니라 동일한 데이터에 대한 기술이 주관에 따라 달라질 수도 있다는 것을 알게 되였다. 특히 발달장애 시스템 구현은 현재의 컴퓨팅 환경에서의 동영상 데이터 처리에 대한 비중의 증가, 텍스트 위주의 데이터에서 시각적인 동영상으로의 데이터 활용의 전이 등 발달장애 데이터가 멀티미디어 환경에 적합한 데이터로의 전이가 필수적이며 사용자 역시 빠른 이해를 위해 시각적 데이터를 선호하기 때문에 본 논문에서는 GUI(Graphics User Interface) 기법을 도입하여 검사 중에 텍스트 명령어는 거의 사용하지 않고도 발달장애 진단 평가를 수행할 수 있게 했다. 특히 발달장애 진단 평가에서 필요한 각종 데이터는 그 속성이 영상, 이미지, 논리연산의 필요성 및 각종 연산이 요구된다. 그래서 본 논문에서는 문제점을 해결하기 위해 편집대상 데이터(Content)에 의해 관련 정보를 검색하는 내용 기반(Content-based)의 검색 기술에 대한 연구를 적용했다.
얼굴인식 기술은 지능형 보안, 웹에서 콘텐츠 검색, 지능로봇의 시각부분, 머신인터페이스 등, 활용이 광범위 하다. 그러나 일반적으로 대상자의 표정과 포즈 변화, 주변의 조명 환경과 같은 문제가 있으며 이와 더불어 원거리에서 획득한 영상의 경우 저해상도를 비롯하여 블러와 잡음에 의한 영상의 열화 등의 여러 가지 어려움이 발생한다. 본 논문에서는 포톤 카운팅(Photon-counting) 선형판별법(Linear Discriminant Analysis)을 이용한 다중 분류기(Classifier)에 의한 판정을 융합하여 얼굴 영상 인식을 수행한다. Fisher 선형판별법은 집단 간 분산을 최대로 하고 집단 내 분산을 최소로 하는 공간으로 선형 투영하는 방법으로, 학습영상의 수가 적을 경우 특이행렬 문제가 발생하지만 포톤카운팅 선형 판별법은 이러한 문제가 없으므로 차원축소를 위한 전 처리 과정이 필요 없다. 본 논문의 다중 분류기는 포톤 카운팅 선형판별법의 유클리드 거리(Euclidean Distance) 또는 정규화된 상관(Normalized Correlation)을 적용하는 판정규칙에 따라 구성된다. 다중분류기의 판정의 융합은 각 분류기 cost의 정규화(Normalization), 유효화(Validation), 그리고 융합규칙(Fusion Rule)으로 구성된다. 각 분류기에서 도출된 cost는 같은 범위로 정규화된 후 유효화 과정에서 선별되고 Minimum, 또는 Average, 또는 Majority-voting의 융합규칙에 의하여 융합된다. 실험에서는 원거리에서 획득한 효과를 구현하기 위하여 고해상도 데이터베이스 영상을 인위적으로 Unfocusing과 Motion 블러를 이용하여 열화하여 테스트하였다. 실험 결과는 다중분류기 융합결과의 인식률은 단일분류기보다 높다는 것을 보여준다.
Automatic wood species identification systems have enabled fast and accurate identification of wood species outside of specialized laboratories with well-trained experts on wood species identification. Conventional automatic wood species identification systems consist of two major parts: a feature extractor and a classifier. Feature extractors require hand-engineering to obtain optimal features to quantify the content of an image. A Convolutional Neural Network (CNN), which is one of the Deep Learning methods, trained for wood species can extract intrinsic feature representations and classify them correctly. It usually outperforms classifiers built on top of extracted features with a hand-tuning process. We developed an automatic wood species identification system utilizing CNN models such as LeNet, MiniVGGNet, and their variants. A smartphone camera was used for obtaining macroscopic images of rough sawn surfaces from cross sections of woods. Five Korean softwood species (cedar, cypress, Korean pine, Korean red pine, and larch) were under classification by the CNN models. The highest and most stable CNN model was LeNet3 that is two additional layers added to the original LeNet architecture. The accuracy of species identification by LeNet3 architecture for the five Korean softwood species was 99.3%. The result showed the automatic wood species identification system is sufficiently fast and accurate as well as small to be deployed to a mobile device such as a smartphone.
본 논문에서는 효율적인 얼굴 영역 검출 기법을 제안하고 얼굴 객체 검출을 통해 인물 기반의 비디오 시스템을 제공한다. 비디오 분할을 위해 비디오 시퀀스로부터 장면 전환점을 검출하고 분할된 장면들로부터 대표 프레임을 선정한다. 대표 프레임은 인접 프레임 간 변화량이 가장 적은 프레임으로 선정하였으며 추출된 대표 프레임에 대해서 얼굴 영역 검출 알고리즘을 적용하여 등장인물을 포함하는 프레임들을 정보로 제공한다. 얼굴영역 검출을 위해 피부색의 통계적 특성을 이용한 Bayes 분류기를 이용한다. 피부색 검출 결과 영상으로부터 수직 및 수평 투영 기법을 이용하여 영상 분할을 수행하고 후보군들을 생성한다. 생성된 후보군 중 오검출 영역을 최소화하기 위해서 이진 분류 나무(CART)를 이용하여 분류기를 생성한다. 특징 값으로는 SGLD(spatial gray level dependence) 매트릭스로부터 Inertial, Inverse Difference, Correlation 등의 질감 정보를 이용하여 최적의 이진 분류 나무를 생성한다. 실험 결과 제안된 얼굴 영역 검출 알고리즘은 복잡하고 다양한 배경에서도 우수한 성능을 보였으며, 얼굴 객체를 포함하는 프레임들을 비디오 정보로 제공한다. 제안하는 시스템은 향후 화자 인식 기법을 이용하여 등장인물 기반의 비디오 분석 및 에 활용될 수 있을 것이다.
의인화는 커뮤니케이션 디자인 영역에서 흔히 사용되는 소구 방법 중 하나로 인간이 접하는 거의 모든 시각이미지는 이러한 의인화 현상에 노출되어 있고 우리는 의식적으로 또는 무의식적으로 의인화 현상을 활용하거나 활용 당하고 있는 현실이다. 또한 의인화 현상은 특정 학문분야가 아닌 거의 모든 문화·예술 전반에 걸쳐 적용 사례를 찾아볼 수 있다. 따라서 본 논문에서는 문화·예술 전반에서 관찰되는 의인화 기반의 사례와 선행연구의 결과를 토대로 의인화를 관계 형성구도를 중심으로 재정의 하였다. 또한 의인화 기법에 대한 선행연구에서 도출된 의인화 유형 및 제스처 목록을 기준으로 의인화 형태를 관계형성의 주체에 따라 의인화와 역 의인화, 두 부류로 규정하고 각각의 다른 물리적인 형질을 기준으로 화훼 및 공간장식을 포함한 디자인 영역에 걸쳐 소구되는 의인화 기법의 적용사례를 통해 효과적인 의인화 적용 체계를 정의 하였다. 의인화 관계형성 구도와 의인화 적용 체계의 정의를 통해 다양한 매체에서 효과적인 수용자 만족도를 이끌어 낼 수 있는 의인화 기법의 틀을 제공하였다. 또한 매체가 가진 본질의 개념적 형질의 특성을 제스처 목록과 의인화 유형분류에 동기화하는 의인화 적용체계를 통해 강력하고 효과적인 의인화 기법으로 향유자와 소통할 수 있는 장치가 마련될 수 있음을 확인하였다.
The purpose of this study was to develope, based on the Nursing Intervention Classification (NIC) system. a set of standardized nursing interventions which had been validated. and their associated activities. for use with nursing diagnoses related to home health care for women who have had a caesarian delivery and for their newborn babies. This descriptive study for instrument development had three phases: first. selection of nursing diagnoses. second, validation of the preliminary home health care interventions. and third, application of the home care interventions. In the first phases, diagnoses from 30 nursing records of clients of the home health care agency at P. medical center who were seen between April 21 and July 30. 1998. and from 5 textbooks were examined. Ten nursing diagnoses were selected through a comparison with the NANDA (North American Nursing Diagnosis Association) classification In the second phase. using the selected diagnoses. the nursing interventions were defined from the diagnoses-intervention linkage lists along with associated activities for each intervention list in NIC. To develope the preliminary interventions five-rounds of expertise tests were done. During the first four rounds. 5 experts in clinical nursing participated. and for the final content validity test of the preliminary interventions. 13 experts participated using the Fehring's Delphi technique. The expert group evaluated and defined the set of preliminary nursing interventions. In the third phases, clinical tests were held at in a home health care setting with two home health care nurses using the preliminary intervention list as a questionnaire. Thirty clients referred to the home health care agency at P. medical center between October 1998 and March 1999 were the subjects for this phase. Each of the activities were tested using dichotomous question method. The results of the study are as follows: 1. For the ten nursing diagnoses. 63 appropriate interventions were selected from 369 diagnoses interventions links in NlC., and from 1.465 associated nursing activities. From the 63 interventions. the nurses expert group developed 18 interventions and 258 activities as the preliminary intervention list through a five-round validity test 2. For the fifth content validity test using Fehring's model for determining lCV (Intervention Content Validity), a five point Likert scale was used with values converted to weights as follows: 1=0.0. 2=0.25. 3=0.50. 4=0.75. 5=1.0. Activities of less than O.50 were to be deleted. The range of ICV scores for the nursing diagnoses was 0.95-0.66. for the nursing interventions. 0.98-0.77 and for the nursing activities, 0.95-0.85. By Fehring's method. all of these were included in the preliminary intervention list. 3. Using a questionnaire format for the preliminary intervention list. clinical application tests were done. To define nursing diagnoses. home health care nurses applied each nursing diagnoses to every client. and it was found that 13 were most frequently used of 400 times diagnoses were used. Therefore. 13 nursing diagnoses were defined as validated nursing diagnoses. Ten were the same as from the nursing records and textbooks and three were new from the clinical application. The final list included 'Anxiety', 'Aspiration. risk for'. 'Infant behavior, potential for enhanced, organized'. 'Infant feeding pattern. ineffective'. 'Infection'. 'Knowledge deficit'. 'Nutrition, less than body requirements. altered', 'Pain'. 'Parenting'. 'Skin integrity. risk for. impared' and 'Risk for activity intolerance'. 'Self-esteem disturbance', 'Sleep pattern disturbance' 4. In all. there were 19 interventions. 18 preliminary nursing interventions and one more intervention added from the clinical setting. 'Body image enhancement'. For 265 associated nursing activities. clinical application tests were also done. The intervention rate of 19 interventions was from 81.6% to 100%, so all 19 interventions were in c1uded in the validated intervention set. From the 265 nursing activities. 261(98.5%) were accepted and four activities were deleted. those with an implimentation rate of less than 50%. 5. In conclusion. 13 diagnoses. 19 interventions and 261 activities were validated for the final validated nursing intervention set.
안동 지역에서의 '원이엄마'를 모티브로 제작된 특수 영상 콘텐츠 애니메이션은 전통소재의 지역 콘텐츠의 발굴과 지적 재산권의 활용에 주요한 사례 연구로서의 가치를 가진다. 한국적 콘텐츠 개발의 과정에서의 사실 요소(FACTOR)와 픽션(FICTION)의 결합은 디자인 개발과 콘텐츠 연구에 중요한 부분으로서 작품 개발에 가장 큰 영향을 미치는 것이며, 전통 문화 캐릭터 개발 과정에서의 창의성 및 독창성과 함께 프리 프로덕션(Pre-Production)의 과정에서의 원화 기획의 핵심 역할이다. 한국적 콘텐츠는, 개발과정에서 한국적 캐릭터 개발과 함께 지속적으로 심도 있게 다루어 할 연구 과제이다. 여기에 각 캐릭터 디자인 구상과 기획에서의 과정의 고찰이 필요하며, 본 연구의 방향은 콘텐츠의 각 캐릭터 중 주요 주인공 캐릭터 개발의 과정을 통해 전통 문화 캐릭터가 개발되는 과정에 대한 이해와 사항들에 대한 디자인 결과물 연구이다. 의상과 고증을 통한 객관적 캐릭터 개발과정을 제시하여 전통문화 캐릭터 개발에 대한 이해과 방향을 제시하였다. 본론과 결론으로서는 전통적 문양 등의 개발 전체의 기획이 주인공 캐릭터에 어떤 형태로 적용되는지에 대한 과정과 도출, 그리고 세대 연령별에 따른 주인공 각 캐릭터에 대한 디자인이 드로잉 되었고, 안동시와 전통 캐릭터가 전통콘텐츠 창출에 어떤 의미를 가지는 것인지를 제시하였다.
식생정보는 도시계획, 조경, 수자원, 환경 등 다양한 분야에서 활용되는 매우 중요한 인자이다. 식생은 수관밀도 혹은 엽록소 함량에 따라 식생의 활력도에 차이가 발생하나 기존 연구에서는 식생지역을 분류시 식생 활력도를 고려하지 않았다. 본 연구에서는 다양한 응용연구를 충족시키기 위해 식생 활력도를 고려한 식생지수 경계값을 설정하는 연구를 수행하였다. 먼저 eBee 고정익 드론에 다중분광 카메라를 탑재하여 광학 및 근적외선 정사영상을 구축하였으며, 그리고 각 정사영상에 대해 GIS 연산을 수행하여 NDVI, GNDVI, SAVI, MSAVI 식생지수를 계산하였다. 또한 대상지에 대한 식생위치를 VRS 측량을 통해 조사하였으며 이를 이용하여 식생 활력도를 고려한 식생지수별 정확도를 평가하였다. 그 결과 식생 활력도가 좋은 지점을 식생지역으로 선정한 시나리오가 식생 활력도가 다소 부족한 지점도 식생지역으로 선정한 시나리오에 비해 식생지수의 분류 정확도가 높게 나타났다. 또한 각 현장 조사 지점과의 중첩을 통해 계산한 식생지수별 Kappa 계수를 통해 시나리오별로 식생을 분류하기에 가장 적합한 식생지수 경계값을 선정할 수 있었다. 따라서 본 연구에서 제시한 식생 활력도를 고려한 식생지수 정확도 평가는 향후 도시계획 등 다양한 업무 분야에서 의사결정 지원을 위한 유용한 정보를 제공해 줄 수 있을 것으로 판단된다.
1990년대 중반에 협업 필터링의 출현으로 인하여 추천시스템에 관련된 연구가 늘어나게 되었다. 협업 필터링의 출현 이후 내용 기반 필터링, 협업 필터링과 내용 기반 필터링이 혼합된 하이브리드 필터링 등 새로운 기법들이 출현함으로써 2000년대에는 추천시스템의 연구가 눈에 띄게 증가하였다. 하지만 현재까지 추천시스템에 관련된 문헌들에 대한 리뷰와 분류가 체계적으로 되어있지 않다. 이와 같은 문제에 대한 해결방안으로써, 본 연구에서는 2001년부터 2010년도까지의 추천시스템에 관련된 문헌들 중 MIS Journal Ranking의 125개의 저널에서 추천시스템(Recommender system, Recommendation system), 협업 필터링(Collaborative Filtering), 내용 기반 필터링(Content based Filtering), 개인화 시스템(Personalized system) 등의 5가지 키워드로 제한하여 조사하였다. 총 37개의 저널에서 논문을 검색하였으며, 검색되어진 논문을 분석한 결과 추천시스템과 관련이 없는 논문을 제외한 총 187개의 논문을 선정하여 분석하였다. 이 연구에서는 그러나 컨퍼런스 논문, 석사, 박사학위 논문, 영어로 작성되지 않은 논문, 완성되지 않은 논문 등은 제외하였다. 본 연구에서는 187개의 논문을 분석하여 2001년부터 2010년까지의 각각의 년도 별 추천시스템의 연구에 대한 동향 분석, Journal별 추천시스템의 게재 분류, 추천시스템 어플리케이션의 사용 분야(책, 문서, 이미지, 영화, 음악, 쇼핑, TV 프로그램, 기타)별 분류 및 분석, 추천시스템에 사용된 데이터마이닝 기술(연관 규칙, 군집화, 의사 결정나무, 최근접 이웃 기법, 링크 분석 기법, 신경망, 회귀분석, 휴리스틱 기법)별 분류 및 분석을 수행하였다. 따라서 본 연구에서 제안한 각각의 분류 및 분석 결과들을 통하여 현재까지 추천시스템의 연구에 대한 연구 동향을 파악 할 수 있었으며, 분석결과를 통해 추천시스템에 관심이 있는 연구자와 전문가에게 미래의 추천시스템의 연구에 대한 가이드라인을 제시 할 수 있을 것이라고 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.