• Title/Summary/Keyword: Contamination of Surface

Search Result 937, Processing Time 0.027 seconds

Vertical Distribution and Contamination of Trace Metals in Sediments Within Hoidong Reservoir (회동저수지 호저퇴적물의 미량원소 오염 및 수직적 분산특성)

  • Lee, Pyeong-Koo;Kang, Min-Ju;Youm, Seung-Jun;Lee, Wook-Jong
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.587-604
    • /
    • 2007
  • In order to investigate the vertical variations and speciations of trace elements, and their correlations in Hoidong reservoir, sediment cores (21-41 cm below surface) and interstitial water samples were collected from five sampling locations. The total average concentrations of trace metals in sediment core samples were $232{\pm}30.8mg/kg$ for Zn, $119{\pm}272mg/kg$ for Cu, $58.4{\pm}4.1mg/kg$ for Pb, $15.7{\pm}3.3mg/kg$ for Ni and $1.6{\pm}0.3mg/kg$ for Cd. The total concentrations of trace metals in core sediments generally decreased toward the center of the Hoidong reservoir. The total concentrations of Mn, Pb and Zn decreased with depth for all the sample locations, while Cu and Fe concentrations increased. The trace metal concentrations of interstitial water sample were in the order of Fe>Mn>Cu>Zn, but Cd, Ni and Pb were not detected. The concentrations of Zn, Cu, Fe and Mn in the interstitial water samples showed a tendency of increasing toward the bottom of the core, suggesting a possible upward diffusion. This migration of trace metals may lead to their transfer to the sediment-water interface. These trace elements would be subsequently fixed onto amorphous Fe and Mn-oxides and carbonates in the topmost layer of sediment. Based on the $K_D$ values, the relative mobilities of the studied metals were in the order of Mn>Cu>Zn>Fe. Geochemical partitioning confirmed that surface enrichment by trace metals mainly resulted from a progressive increase of the concentrations in the fractions II and III. Copper, Fe, Mn and Zn concentrations of interstitial water were closely correlated with their exchangeable fractions of sediments.

Assessment of Environmental Impacts and $CO_2$ Emissions from Soil Remediation Technologies using Life Cycle Assessment - Case Studies on SVE and Biopile Systems - (전과정평가(LCA)에 의한 토양오염 정화공정의 환경영향분석 및 $CO_2$ 배출량 산정 - SVE 및 Biopile 시스템 중심으로 -)

  • Jeong, Seung-Woo;Suh, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.267-274
    • /
    • 2011
  • The environmental impacts of 95% remediation of a total petroleum hydrocarbon-contaminated soil were evaluated using life cycle assessment (LCA). LCA of two remediation systems, soil vapor extraction (SVE) and biopile, were conducted by using imput materials and energy listed in a remedial system standardization report. Life cycle impact assessment (LCIA) results showed that the environmental impacts of SVE were all higher than those of biopile. Prominent four environmental impacts, human toxicity via soil, aquatic ecotoxicity, human toxicity via surface water and human toxicity via air, were apparently found from the LCIA results of the both remedial systems. Human toxicity via soil was the prominent impact of SVE, while aquatic ecotoxicity was the prominent impact of biopile. This study also showed that the operation stage and the activated carbon replacement stage contributed 60% and 36% of the environmental impacts of SVE system, respectively. The major input affecting the environmental impact of SVE was electricity. The operation stage of biopile resulted in the highest contribution to the entire environmental impact. The key input affecting the environmental impact of biopile was also electricity. This study suggested that electricity reduction strategies would be tried in the contaminated-soil remediation sites for archieving less environmental impacts. Remediation of contaminated soil normally takes long time and thus requires a great deal of material and energy. More extensive life cycle researches on remedial systems are required to meet recent national challenges toward carbon dioxide reduction and green growth. Furthermore, systematic information on electricity use of remedial systems should be collected for the reliable assessment of environmental impacts and carbon dioxide emissions during soil remediation.

Evaluation of Groundwater Quality Deterioration using the Hydrogeochemical Characteristics of Shallow Portable Groundwater in an Agricultural Area (수리지화학적 특성 분석을 이용한 농촌 마을 천부 음용지하수의 수질 저하 원인 분석)

  • Yang, Jae Ha;Kim, Hyun Koo;Kim, Moon Su;Lee, Min Kyeong;Shin, In Kyu;Park, Sun Hwa;Kim, Hyoung Seop;Ju, Byoung Kyu;Kim, Dong Su;Kim, Tae Seung
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.533-545
    • /
    • 2015
  • Spatial and seasonal variations in hydrogeochemical characteristics and the factors affecting the deterioration in quality of shallow portable groundwater in an agricultural area are examined. The aquifer consists of (from the surface to depth) agricultural soil, weathered soil, weathered rock, and bedrock. The geochemical signatures of the shallow groundwater are mostly affected by the NO3 and Cl contaminants that show a gradual downward increase in concentration from the upper area, due to the irregular distribution of contamination sources. The concentrations of the major cations do not varied with the elapsed time and the NO3 and Cl ions, when compared with concentrations in background groundwater, increase gradually with the distance from the upper area. This result suggests that the water quality in shallow groundwater deteriorates due to contaminant sources at the surface. The contaminations of the major contaminants in groundwater show a positive linear relationship with electrical conductivity, indicating the deterioration in water quality is related to the effects of the contaminants. The relationships between contaminant concentrations, as inferred from the ternary plots, show the contaminant concentrations in organic fertilizer are positively related to concentrations of NO3, Cl, and SO42− ions in the shallow portable groundwaters, which means the fertilizer is the main contaminant source. The results also show that the deterioration in shallow groundwater quality is caused mainly by NO3 and Cl derived from organic fertilizer with additional SO42− contaminant from livestock wastes. Even though the concentrations of the contaminants within the shallow groundwaters and the contaminant sources are largely variable, it is useful to consider the ratio of contaminant concentrations and the relationship between contaminants in groundwater samples and in the contaminant source when analyzing deterioration in water quality.

Mineralogical Study on the Clay Formation and Heavy Metal Speciation in the Acidified Soil Profile of the Onsan Industrial Area (온산공업지역 산성 토양 프로화일 내에서의 점토광물의 생성과 중금속 이온의 거동에 관한 광물학적 연구)

  • 이상수;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • The present study is focused on the granite weathering and soil formation, and the heavy metal contamination in soils in the Onsan industrial area. For profile study, soil sampling was conducted on each depth and experimental analyses have been conducted on those samples. X-ray diffraction analyses show that clay minerals consist mainly of kaolin minerals, vermiculite, and minor illite. Most of kaolin minerals in the lower kiwi of the profile consist of halloysite as confirmed by formamide intercalation, but the content of halloysite decreases gradually toward the surface since it has been transformed to kaolinite in the upper part of the profile. Thermal treatment by heating at $110^{\circ}C,\;300^{\circ}C,\;and\;550^{\circ}C$ shows a diffuse and broad peak the between 10 and $14\;{\AA}$ region in X-ray diffractograms. This suggests the possible existence of the hydroxy-Al interlayerecl vermiculite. Na-citrate extraction method reaconfirms this result showing transition of $14\;{\AA}$ peak to $10\;{\AA}$ In by removing the interlayer materials and restoring the vermiculite to its original state. The occurrence of hydroxy-Al interlayered vermiculite is also supported by soil pH distribution room 3.9 In the lower part to 3.6 in the upper part of the profile. Sequential extraction experiment was conducted to investigate the states of heavy metals in soils. The experiment shows that relatively high amounts of heavy metals are concentrated in the upper part of the profile and that most of them are bound to Fe/Mn oxides and organic matters while less concentration in clay minerals. The result indicates that most of heavy metal pollutants are concentrated in the surface soil and that the low concentrations of heavy metals in clays are mainly due to the low adsorption capacities of clay minerals such as kaolin minerals and hydroxy-Al interlayered vermiculite in acidified soil condition.

Analysis of Empirical Multiple Linear Regression Models for the Production of PM2.5 Concentrations (PM2.5농도 산출을 위한 경험적 다중선형 모델 분석)

  • Choo, Gyo-Hwang;Lee, Kyu-Tae;Jeong, Myeong-Jae
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.283-292
    • /
    • 2017
  • In this study, the empirical models were established to estimate the concentrations of surface-level $PM_{2.5}$ over Seoul, Korea from 1 January 2012 to 31 December 2013. We used six different multiple linear regression models with aerosol optical thickness (AOT), ${\AA}ngstr{\ddot{o}}m$ exponents (AE) data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites, meteorological data, and planetary boundary layer depth (PBLD) data. The results showed that $M_6$ was the best empirical model and AOT, AE, relative humidity (RH), wind speed, wind direction, PBLD, and air temperature data were used as input data. Statistical analysis showed that the result between the observed $PM_{2.5}$ and the estimated $PM_{2.5}$ concentrations using $M_6$ model were correlations (R=0.62) and root square mean error ($RMSE=10.70{\mu}gm^{-3}$). In addition, our study show that the relation strongly depends on the seasons due to seasonal observation characteristics of AOT, with a relatively better correlation in spring (R=0.66) and autumntime (R=0.75) than summer and wintertime (R was about 0.38 and 0.56). These results were due to cloud contamination of summertime and the influence of snow/ice surface of wintertime, compared with those of other seasons. Therefore, the empirical multiple linear regression model used in this study showed that the AOT data retrieved from the satellite was important a dominant variable and we will need to use additional weather variables to improve the results of $PM_{2.5}$. Also, the result calculated for $PM_{2.5}$ using empirical multi linear regression model will be useful as a method to enable monitoring of atmospheric environment from satellite and ground meteorological data.

Intercomparing the Aerosol Optical Depth Using the Geostationary Satellite Sensors (AHI, GOCI and MI) from Yonsei AErosol Retrieval (YAER) Algorithm (연세에어로졸 알고리즘을 이용하여 정지궤도위성 센서(AHI, GOCI, MI)로부터 산출된 에어로졸 광학두께 비교 연구)

  • Lim, Hyunkwang;Choi, Myungje;Kim, Mijin;Kim, Jhoon;Go, Sujung;Lee, Seoyoung
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.119-130
    • /
    • 2018
  • Aerosol Optical Properties (AOPs) are retrieved using the geostationary satellite instruments such as Geostationary Ocean Color Imager (GOCI), Meteorological Imager (MI), and Advanced Himawari Imager (AHI) through Yonsei AErosol Retrieval algorithm (YAER). In this study, the retrieved aerosol optical depths (AOD)s from each instrument were intercompared and validated with the ground-based sunphotometer AErosol Robotic NETwork (AERONET) data. As a result, the four AOD products derived from different instruments showed consistent results over land and ocean. However, AODs from MI and GOCI tend to be overestimated due to cloud contamination. According to the comparison results with AERONET, the percentage within expected errors (EE) are 36.3, 48.4, 56.6, and 68.2% for MI, GOCI, AHI-minimum reflectivity method (MRM), and AHI-estimated surface reflectance from shortwave Infrared (ESR) product, respectively. Since MI AOD is retrieved from a single visible channel, and adopts only one aerosol type by season, EE is relatively lower than other products. On the other hand, the AHI ESR is more accurate than the minimum reflectance method as used by GOCI, MI, and AHI MRM method in May and June when the vegetation is relatively abundant. These results are explained by the RMSE and the EE for each AERONET site. The ESR method result show to be better than the other satellite product in terms of EE for 15 out of 22 sites used for validation, and they are better than the other product for 13 sites in terms of RMSE. In addition, the error in observation time in each product is found by using characteristics of geostationary satellites. The absolute median biases at 00 to 06 Universal Time Coordinated (UTC) are 0.05, 0.09, 0.18, 0.18, 0.14, 0.09, and 0.10. The absolute median bias by observation time has appeared in MI and the only 00 UTC appeared in GOCI.

Adsorption of Arsenic onto Two-Line Ferrihydrite (비소의 Two-Line Ferrihydrite에 대한 흡착반응)

  • Jung, Young-Il;Lee, Woo-Chun;Cho, Hyen-Goo;Yun, Seong-Taek;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.227-237
    • /
    • 2008
  • Arsenic has recently become of the most serious environmental concerns, and the worldwide regulation of arsenic fur drinking water has been reinforced. Arsenic contaminated groundwater and soil have been frequently revealed as well, and arsenic contamination and its treatment and measures have been domestically raised as one of the most important environmental issues. Arsenic behavior in geo-environment is principally affected by oxides and clay minerals, and particularly iron (oxy)hydroxides have been well known to be most effective in controlling arsenic. Among a number of iron (oxy)hydroxides, for this reason, 2-line ferrihydrite was selected in this study to investigate its effect on arsenic behavior. Adsorption of 2-line ferrihydrite was characterized and compared between As(III) and As(V) which are known to be the most ubiquitous species among arsenic forms in natural environment. Two-line ferrihydrite synthesized in the lab as the adsorbent of arsenic had $10\sim200$ nm for diameter, $247m^{2}/g$ for specific surface area, and 8.2 for pH of zero charge, and those representative properties of 2-line ferrihydrite appeared to be greatly suitable to be used as adsorbent of arsenic. The experimental results on equilibrium adsorption indicate that As(III) showed much stronger adsorption affinity onto 2-line ferrihydrite than As(V). In addition, the maximum adsorptions of As(III) and As(V) were observed at pH 7.0 and 2.0, respectively. In particular, the adsorption of As(III) did not show any difference between pH conditions, except for pH 12.2. On the contrary, the As(V) adsorption was remarkably decreased with increase in pH. The results obtained from the detailed experiments investigating pH effect on arsenic adsorption show that As(III) adsorption increased up to pH 8.0 and dramatically decreased above pH 9.2. In case of As(V), its adsorption steadily decreased with increase in pH. The reason the adsorption characteristics became totally different depending on arsenic species is attributed to the fact that chemical speciation of arsenic and surface charge of 2-line ferrihydrite are significantly affected by pH, and it is speculated that those composite phenomena cause the difference in adsorption between As(III) and As(V). From the view point of adsorption kinetics, adsorption of arsenic species onto 2-line ferrihydrite was investigated to be mostly completed within the duration of 2 hours. Among the kinetic models proposed so for, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto 2-line ferrihydrite.

Evaluation on Heavy Metal Contents in Agricultural Soils around Industrial Complexes in Korea (공단 인근 농경지 토양 중 중금속 함량 평가)

  • Yun, Sun-Gang;Chae, Mi-Jin;Kim, Yoo-Hak;Kong, Myung-Suk;Jung, Ha-il;Kim, Suk-Cheol;Kim, Myoung-Suk;Park, Seong-Jin;Lee, Chang-Hoon;Yang, Jae-E;Kim, Sung-Chul;Kim, Gi-In;Kim, Gwon-Rae;Jung, Goo-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.141-145
    • /
    • 2018
  • BACKGROUND: Agricultural soils are vulnerable from contamination of heavy metal derived from industrial waste. Monitoring on heavy metals on agricultural soils around industrial complexes and evaluation on distributional state on the concentrations of heavy metals in soil have been carried out for problem assessment on soil condition. METHODS AND RESULTS: Soil samples of 1,200, were collected from sixty site of industrial complexes located Gyounggi, Chungbuk, Cheonbuk, and Gyoungnam provinces. Total concentration of Cu, Pb, Zn, Ni, and As were analyzed. Heavy metal concentrations in most soil samples were below warning criteria, except 1 site of Pb, Ni, and As, separately. The comparison of mean values of heavy metal concentrations between soils around industrial complexes and paddy soils, showed similar levels of heavy metals, except Pb. The concentrations of lots of heavy metals were distributed between from warning criteria to one fifth level of warning criteria. However, in the case of Cu and Pb, more than 30% were distributed below one twenties level of warning criteria. These results were very similar with the distribution state of heavy metals in upland soils. The concentrations of heavy metals in surface soil and subsoil were similar among the heavy metals in soils around industrial complexes. CONCLUSION: The concentrations of heavy metals in soils around industrial complexes were distributed close to warning criteria. Long term and continous monitoring and evaluation on heavy metals in agricultural soils are required for food safety and sustainable soil management.

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.

A Mineralogical Study on the Arsenic Behavior in the Tailings of Nakdong Mine (낙동광산의 광미 내 비소 거동에 대한 광물학적 연구)

  • Lee, Woo-Chun;Cho, Hyen-Goo;Kim, Young-Ho;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.359-370
    • /
    • 2009
  • Arsenic and heavy metals leached out as a result of oxidation of tailings exposed to the surface pose a serious environmental contamination of mine areas. This study investigated how arsenic behavior is controlled by a variety of processes, such as oxidation of sulfides and formation or alteration of secondary minerals, based on mineralogical methods. The study was carried out using the tailing samples obtained from Nakdong mine located in Jeongseongun, Gangwondo. After separating magnetic and non-magnetic minerals using pretreated tailing samples, each mineral sample was classified according to their colors and metallic lusters observed by the stereoscopic microscope. Subsequently, the mineralogical properties were determined using various instrumental analyses, such as x-ray diffractometer (XRD), energy dispersive spectroscopy (EDS), and electron probe micro analyzer (EPMA). The literature review confirmed that various ore minerals were identified in the Nakdong ore deposits. In this study, however, there were observed a few original ore minerals as well as secondary and/or tertiary minerals newly formed as a result of weathering including oxidation. In particular, we did not recognize pyrrhotite which has been known to originally exist in a large abundance, but peculiarly colloform-type iron (oxy)hydroxides were identified, which indicates most of pyrrhotite has been altered by rapid weathering due to its large reactivity. In addition, a secondary scorodites filling the fissure of weathered primary arsenopyrites were identified, and it is speculated that arsenic is immobilized through such a alteration reaction. Also, we observed tertiary iron (oxy)hydroxides were formed as a result of re-alteration of secondary jarosites, and it suggests that the environment of tailing has been changed to high pH from low pH condition which was initiated and developed by oxidation reactions of diverse primary ore minerals. The environmental change is mainly attributed to interactions between secondary minerals and parental rocks around the mine. As a result, not only was the stability of secondary minerals declined, but tertiary minerals were newly formed. As such a process goes through, arsenic which was immobilized is likely to re-dissolve and disperse into surrounding environments.