• Title/Summary/Keyword: Contaminated-soil

Search Result 1,768, Processing Time 0.03 seconds

Microbiological Hazard Analysis on Perilla Leaf Farms at the Harvesting Stage for the Application of the Good Agricultural Practices(GAP) (깻잎의 농산물우수관리제도(GAP) 적용을 위한 수확단계에서 미생물학적 위해요소 분석)

  • Kwon, Woo-Hyun;Lee, Won-Gyeong;Song, Jeong-Eon;Kim, Kyeong-Yeol;Shim, Won-Bo;Yoon, Yo-Han;Kim, Yun-Shik;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.3
    • /
    • pp.295-300
    • /
    • 2012
  • The purpose of this study was to analyze microbiological hazards for plants, cultivation environments and personal hygiene of perilla leaf farms at the harvesting stage. Samples were collected from three perilla leaf farms(A, B, C) located in Gyeongnam, Korea and tested for sanitary indications, fungi and pathogenic bacteria(Escherichia coli O157:H7, Listeria monocytogens, Salmonella spp., Staphylococcus aureus and Bacillus cereus). As a result, total bacteria and coliform in perilla leaf were detected at the levels of 4.4~5.2 and 3.4~4.3 log CFU/g, respectively, but E. coli was not detected in all samples. Among the pathogenic bacteria, B. cereus(perilla leaf: 2.0~2.4 log CFU/g, stem: 1.4~2.1 log CFU/g, water: 0.7 log CFU/ml, soil: 4.2~5.0 log CFU/g, hands: 3.0 log CFU/ hand, gloves: 2.1~2.4 log CFU/100 $cm^2$, glothes: 1.5~2.8 log CFU/100 $cm^2$) and S. aureus(3.4 log CFU/hand) were detected in all samples and worker's hand from farm A, respectively. However, other pathogenic bacteria were not detected. This study demonstrates that perilla leaf at the harvesting stage was significantly contaminated with microbial hazards.

Removal of Arsenite by Nanocrystalline Mackinawite(FeS)-Coated Alumina (나노크기 매킨나와이트로 코팅된 알루미나에 의한 아비산염의 제거)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.101-110
    • /
    • 2013
  • Due to the large specific surface area and great reactivity toward environmental contaminants, nanocrystalline mackinawite (FeS) has been widely applied for the remediation of contaminated groundwater and soil. Furthermore, nanocrystalline FeS is rather thermodynamically stable against anoxic corrosion, and its reactivity can be regenerated continuously by the activity of sulfate-reducing bacteria. However, nanocrystalline mackinawite is prone to either spread out along the groundwater flow or cause pore clogging in aquifers by particle aggregation. Accordingly, this mineral should be modified for the application of permeable reactive barriers (PRBs). In this study, coating methods were investigated by which mackinawite nanoparticles were deposited on the surface of alumina or activated alumina. The amount of FeS coating was found to significantly vary with pH, with the highest amount occurring at pH ~6.9 for both minerals. At this pH, the surfaces of mackinawite and alumina (or activated alumina) were oppositely charged, with the resultant electrostatic attraction making the coating highly effective. At this pH, the coating amounts by alumina and activated alumina were 0.038 and 0.114 $mmol{\cdot}FeS/g$, respectively. Under anoxic conditions, arsenite sorption experiments were conducted with uncoated alumina, uncoated activated alumina, and both minerals coated with FeS at the optimal pH for comparison of their reactivity. Uncoated activated alumina showed the higher arsenite removal compared to uncoated alumina. Notably, the arsenite sorption capacity of activated alumina was little changed by the coating with FeS. This might be attributed to the abundance of highly reactive hydroxyl functional groups (${\equiv}$AlOH) on the surface of activated alumina, making the arsenite sorption by the coated FeS unnoticeable. In contrast, the arsenite sorption capacity of alumina was found to increase substantially by the FeS coating. This was due to the consumption of the surface hydroxyl functional groups on the alumina surface and the subsequent occurrence of As(III) sorption by the coated FeS. Alumina, on the surface area basis, has about 8 times higher FeS coating amount and higher As(III) sorption capacity than silica. This study indicates that alumina is a better candidate than silica for the coating of nanocrystalline mackinawite.

Isolation and Characteristics of a Phenol-degrading Bacterium, Rhodococcus pyridinovorans P21 (페놀분해세균 Rhodococcus pyridinovorans P21의 분리 및 페놀분해 특성)

  • Cho, Kwang-Sik;Lee, Sang-Mee;Shin, Myung-Jae;Park, Soo-Yun;Lee, Ye-Ram;Jang, Eun-Young;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.988-994
    • /
    • 2014
  • The effluents of chemical and petroleum industries often contain non-biodegradable aromatic compounds, with phenol being one of the major organic pollutants present among a wide variety of highly toxic organic chemicals. Phenol is toxic upon ingestion, contact, or inhalation, and it is lethal to fish even at concentrations as low as 0.005 ppm. Phenol biodegradation has been studied in detail using bacterial strains. However, these microorganisms suffer from substrate inhibition at high concentrations of phenol, whereby growth is inhibited. A phenol-degrading bacterium, P21, was isolated from oil-contaminated soil. The phenotypic characteristics and a phylogenetic analysis indicated the close relationship of strain P21 to Rhodococcus pyridinovorans. Phenol biodegradation by strain P21 was studied under shaking condition. The optimal conditions for phenol biodegradation by strain P21 were 0.09% $KNO_3$, 0.1% $K_2HPO_4$, 0.3% $NaH_2PO_4$, 0.015% $MgSO_4{\cdot}7H_2O$, 0.001% $FeSO_4{\cdot}7H_2O$, initial pH 9, and $20-30^{\circ}C$, respectively. When 1,000 ppm of phenol was added to the optimal medium, the strain P21 completely degraded it within two days. Rhodococcus pyridinovorans P21 could grow in up to 1,500 ppm of phenol as the sole carbon source in a batch culture, but it could not grow in a medium containing above 2,000 ppm. Moreover, strain P21 could utilize toxic compounds, such as toluene, xylene, and hexane, as a sole carbon source. However, no growth was detected on chloroform.

Characteristic Assessment of Heavy Metals in Dusts Collected by the Air Filtration System at Subway Stations in Daegu, Korea (대구지역 지하철역사 공기여과필터 포집먼지에 함유된 중금속성분의 특성평가)

  • Do, Hwa-Seok;Song, Hee-Bong;Shin, Dong-Chan;Kwak, Jin-Hee;Lee, Myoung-Sook;Yoon, Ho-Suk;Kang, Hye-Jung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • Samples of subway dust were collected by the air filter system of 30 subway stations on Daegu subway line 1 in January 2008. Samples were sieved below 100 ${\mu}m$, and 14 elements were analyzed using ICP after acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na, V were influenced by natural sources such as weathered rock and resuspended soil, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources such as fuel combustion and waste incineration. Concentrations were remarkably higher in components from natural sources than in components from anthropogenic sources. Anthropogenic sources were significantly affected by indoor dusts than outdoor dusts. Results of pollution indices of heavy metals indicated that indoor dusts were more contaminated with heavy metal ions than outdoor dusts. The correlation analysis among trace elements indicated that components were much correlated in the order of natural sources-anthropogenic sources, anthropogenic sources-anthropogenic sources, natural sources-natural sources in both indoor and outdoor dusts. Trace element components of outdoor dusts were largely correlated than those of indoor dusts. In addition, indoor dusts were significantly affected by outdoor dusts rather than depth from the surface or the average daily number of subway passengers.

Effects of Small Scale Post-Harvest Facility and Hygiene Education on the Level of Microbial Safety in Korean Leeks Production (영양부추 생산농가의 소규모 수확후 처리시설 적용과 위생교육에 따른 미생물학적 안전성 향상 효과)

  • Kim, Se-Ri;Kim, Jin-Bae;Lee, Hyo-Sup;Lee, Eun-Sun;Kim, Won-Il;Ryu, Song-Hee;Ha, Jihyung;Kim, Hwang-Yong;Ryu, Jae-Gee
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.3
    • /
    • pp.249-257
    • /
    • 2015
  • The purposes of this study were to develop a small scale post-harvest facility, and consequently to evaluate the effects of applying the facility along with hygiene education on the level of microbial safety in Korean leeks production. A total of 135 samples were collected at three Korean leeks farms in Yangju, Gyeonggi province. Food safety indicators (Aerobic plate count (APC), coliform count, and Escherichia coli) and foodborne pathogens (E. coli O157:H7, Salmonella spp., Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus) on/in the samples were assessed. The microbial load measured as APC with harvesting tools such as comb, chopping board, and knife, at the farms where the small scale post-harvest facility had been operated (Farms A and B) was lower than that at another farm having no post-harvest facility (Farm C) by 1.44~2.33 log CFU / $100cm^2$. Moreover, the chopping board from Farm C was observed being contaminated with B. cereus at 6.03 log CFU / $100cm^2$. The coliform counts from the samples increased by 0.57~1.89 log CFU/g after leeks was submerged in ground water for washing. E. coli was recovered from leeks, soil, and the ground water used in the washing process, while no E. coli O157:H7, Salmonella spp., and L. monocytogenes was detected. Our results indicated that the small scale post-harvest facility developed in this study as well as the hygiene education played an important role in enhancing the level of microbial food safety in the leeks production environment. However, a disinfection technique could be needed during the washing step in order to prevent a potential contamination.

Microbial Monitoring and Exploring Ways to Prevent or Minimize Microbial Contamination at the Production and Distribution Stages of Fresh Strawberries (신선한 딸기의 생산 및 유통 단계에서의 미생물 모니터링 및 미생물 오염 방지 또는 저감화 방법 모색)

  • Kim, Sol-A;Lee, Jeong-Eun;Kim, Go-Un;Kim, Soo-Hwan;Shim, Won-Bo
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.485-492
    • /
    • 2017
  • This study investigated to determine the microbial contamination levels of strawberries at harvest and distribution stages and to suggest a control measure for reducing the microbial contamination of strawberries by replacing worker's gloves used at harvest and distribution stages. According to the monitoring results, the contamination levels of total aerobic bacteria (TAB) were in the order of soil ($7.12{\pm}0.61{\log}_{10}CFU/g$), gloves ($6.06{\pm}1.80{\log}_{10}CFU/cm^2$), strawberry ($3.28{\times}0.98{\log}_{10}CFU/g$), and water ($3.08{\pm}0.55{\log}_{10}CFU/g$) at harvest stage. TAB of strawberry at was harvest stage reduced from $3.28{\pm}0.98{\log}_{10}CFU/g$ to $1.85{\pm}0.21{\log}_{10}CFU/g$ and $2.6{\pm}0.30{\log}_{10}CFU/g$ at cold and room temperature storage, respectively. By the replacement of worker's gloves and distribution temperature, TAB levels of the strawberries were significantly reduced when compared to those of the strawberries treated without replacement of worker's gloves and distributed at room temperature. For reusing the replaced gloves, washing with a commercial disinfectant, clorox, was effective to reduce microorganisms contaminated on the worker's gloves. These results demonstrated that appropriate replacement of gloves at the harvest and distribution stages is an effective method for reducing microbial contamination of fresh strawberries.

Studies on the Contents of Pollutants in Soil and Leaves of Ornamental Trees in the Namhae Expressway (남해고속도로변(南海高速道路邊)의 식재수목(植栽樹木)에 대한 토양(土壤) 및 엽(葉)의 오염물질함량(汚染物質含量)에 대한 연구(硏究))

  • Kim, Jong Kab;Kim, Jai Saing
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.4
    • /
    • pp.352-358
    • /
    • 1990
  • This study was performed to analyze the pollutants contaminated in the soils and leaves of ornamental trees along the Namhae Express way. The results obtained were as follow ; 1. The contents of total sulfur in soils were generally high in site 8 with slope way and site 9 having more traffic volume, as 87 ppm and 74 ppm, respectively, 2. The contents of heavy metals in soils were lower than those of industrial areas and urban roads, and Fe and Pb contents were higher in sites having much traffic volume. 3. The contents of soluble sulfur in leaves were in the range of 0.08%-0.25%. and those of Pinus strobus and Cedrus deodara were the highest as 0.25% and 0.23%, respectively, and that of Euonymus japonica was 0.08%, the lowest. 4. In the case of heavy metals concentration in leaves, the contents of Fe, Mn, Pb, Zn and Cu were in the range of 68-340 ppm, 101-463 ppm, 2.4-4.9ppm, 33-60 ppm and 1.8-5.1 ppm, respectively. Except Fe, there was not a wide difference between sites and species. 5. In the contents of soluble S, Pb and Zn in leaves, the sites between Jinju and Masan having generally much traffic showed more contents than between Jinju and Hadong. Therefore, it is inferred that contents of S, Pb, and Zn are positive related to the traffic volume. 6. Only for Pb, there was significant correlation between the heavy metals in soils and the leaves at 1% level.

  • PDF

Adsorption of Arsenic onto Two-Line Ferrihydrite (비소의 Two-Line Ferrihydrite에 대한 흡착반응)

  • Jung, Young-Il;Lee, Woo-Chun;Cho, Hyen-Goo;Yun, Seong-Taek;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.227-237
    • /
    • 2008
  • Arsenic has recently become of the most serious environmental concerns, and the worldwide regulation of arsenic fur drinking water has been reinforced. Arsenic contaminated groundwater and soil have been frequently revealed as well, and arsenic contamination and its treatment and measures have been domestically raised as one of the most important environmental issues. Arsenic behavior in geo-environment is principally affected by oxides and clay minerals, and particularly iron (oxy)hydroxides have been well known to be most effective in controlling arsenic. Among a number of iron (oxy)hydroxides, for this reason, 2-line ferrihydrite was selected in this study to investigate its effect on arsenic behavior. Adsorption of 2-line ferrihydrite was characterized and compared between As(III) and As(V) which are known to be the most ubiquitous species among arsenic forms in natural environment. Two-line ferrihydrite synthesized in the lab as the adsorbent of arsenic had $10\sim200$ nm for diameter, $247m^{2}/g$ for specific surface area, and 8.2 for pH of zero charge, and those representative properties of 2-line ferrihydrite appeared to be greatly suitable to be used as adsorbent of arsenic. The experimental results on equilibrium adsorption indicate that As(III) showed much stronger adsorption affinity onto 2-line ferrihydrite than As(V). In addition, the maximum adsorptions of As(III) and As(V) were observed at pH 7.0 and 2.0, respectively. In particular, the adsorption of As(III) did not show any difference between pH conditions, except for pH 12.2. On the contrary, the As(V) adsorption was remarkably decreased with increase in pH. The results obtained from the detailed experiments investigating pH effect on arsenic adsorption show that As(III) adsorption increased up to pH 8.0 and dramatically decreased above pH 9.2. In case of As(V), its adsorption steadily decreased with increase in pH. The reason the adsorption characteristics became totally different depending on arsenic species is attributed to the fact that chemical speciation of arsenic and surface charge of 2-line ferrihydrite are significantly affected by pH, and it is speculated that those composite phenomena cause the difference in adsorption between As(III) and As(V). From the view point of adsorption kinetics, adsorption of arsenic species onto 2-line ferrihydrite was investigated to be mostly completed within the duration of 2 hours. Among the kinetic models proposed so for, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto 2-line ferrihydrite.