• Title/Summary/Keyword: Contaminated surface

Search Result 683, Processing Time 0.03 seconds

THE EFFECTS OF SURFACE CONTAMINATION ON THE SHEAR BOND STRENGTH OF COMPOMER

  • Heo, Jeong-Moo;Lee, Su-Jong;Im, Mi-Kyung
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.577-577
    • /
    • 2001
  • The lastest concepts in bonding are "total etch", in which both enamel and dentin are etched with an acid to remove the smear layers, and "wet dentin" in which the dentin is not blown dry but left moist before application of the bonding primer. Ideally, the application of a bonding agent to tooth structure should be insensitive to minor contamination from oral fluids. Clinically contaminations such as saliva, gingival fluid, blood and handpiece lubricant are often encountered by dentists during preparation of a restoration. The aim of this study was to evaluate the effect of contamination by hem-ostatic agents on shear bond strength of compomer restorations. One hundred and ten extracted human maxillary and mandibular molar teeth were collected. The teeth were cleaned from soft tissue remnant and debris and stored in physiologic solution until they were used. Small flat area on dentin of the buccal surface were wet ground serially with 400, 800 and 1200 abrasive paper on automatic polishing machine. The teeth were randomly divided into 11 groups. Each group was conditioned as follows: Group 1 : Dentin surface was not etched and not contaminated by hemostatic agents. Group2 : Dentin surface was not etched but was contaminated by Astringedent (Ultradent product Inc., Utah, U.S.A.). Group3 : Dentin surface was not etched but was contaminated by Bosmin (Jeil Phann, Korea.). Group4 : Dentin surface was not etched but was contaminated by Epri-dent (Epr Industries, NJ, U.S.A.). Group5: Dentin surface was etched and not contaminated by hemostatic agents. Group 6 : Dentin surface was etched and contaminated by Astringedent. Group7 : Dentin surface was etched and contaminated by Bosmin. Group8 : Dentin surface was etched and contaminated by Epri-dent. Group9 : Dentin surface was contaminated by Astringedent. The contaminated surface was rinsed by water and dried by compressed air. Group10 : Dentin surface was contaminated by Bosmin. The contaminated surface was rinsed by water aud dried by compresfed air. Group 11 : Dentin surface was contaminated by Epri-dent. The contaminated surface was rinsed by water and dried by compresfed air. After surface conditioning, F2000 was applicated on the conditoned dentin surface. The teeth were thermocycled in distilled water at $5^{\circ}C\;and\;55^{\circ}C$ for 1000 cycles. The samples were placed on the binder with the bonded compomer-dentin interface parallel to the lmife-edge shearing rod of the Universal testing machine(Zwick 020, Germany) running at a cross head speed of 1.0mmimin. There were no significant differences in shear bond strength between groups 1 and group 3 and 4, but group 2 showed significant decrease in shear bond strength compared with group 1. There were no significant differences in shear bond strength between group 5 and group 7 and 8, but group 6 showed significant decrease in shear bond strength compared with group 5. There were no significant differences in shear bond strength between group 5 and group 9, 10 and 11.

  • PDF

THE EFFECTS OF SURFACE CONTAMINATION BY HEMOSTATIC AGENTS ON THE SHEAR BOND STRENGTH OF COMPOMER (지혈제 오염이 콤포머의 전단결합강도에 미치는 영향)

  • Heo, Jeong-Moo;Kwak, Ju-Seog;Lee, Hwang;Lee, Su-Jong;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.150-157
    • /
    • 2002
  • One of the latest concepts in bonding are "total etch", in which both enamel and dentin are etched with an acid to remove the smear layers, and "wet dentin" in which the dentin is not dry but left moist before application of the bonding primer Ideally the application of a bonding agent to tooth structure should be insensitive to minor contamination from oral fluids. Clinically, contaminations such as saliva, gingival fluid, blood and handpiece lubricant are often encountered by dentists during cavity preparation. The aim of this study was to evaluate the effect of contamination by hemostatic agents on shear bond strength of compomer restorations. One hundred and ten extracted human maxillary and mandibular molar teeth were collected. The teeth were removed soft tissue remnant and debris and stored in physiologic solution until they were used. Small flat area on dentin of the buccal surface were wet ground serially with 400, 800 and 1200 abrasive papers on automatic polishing machine. The teeth were randomly divided into 11 groups. Each group was conditioned as follows : Group 1: Dentin surface was not etched and not contaminated by hemostatic agents. Group 2: Dentin surface was not etched but was contaminated by Astringedent$^{\circledR}$(Ultradent product Inc., Utah, U.S.A.) Group 3: Dentin surface was not etched but was contaminated by Bosmin$^{\circledR}$(Jeil Pharm, Korea.). Group 4: Dentin surface was not etched but was contaminated by Epri-dent$^{\circledR}$(Epr Industries, NJ, U.S.A.). Group 5: Dentin surface was etched and not contaminated by hemostatic agents. Group 6: Dentin sorface was etched and contaminated by Astringedent$^{\circledR}$. Group 7 : Dentin surface was etched and contaminated by Bosmin$^{\circledR}$. Group 8: Dentin surface was etched and contaminated by Epri-dent$^{\circledR}$. Group 9: Dentin surface was contaminated by Astringedent$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. Group 10: Dentin surface was contaminated by Bosmin$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. Group 11 : Dentin surface was contaminated by Epri-dent$^{\circledR}$. The contaminated surface was rinsed by water and dried by compressed air. After surface conditioning, F2000$^{\circledR}$ was applicated on the conditoned dentin surface The teeth were thermocycled in distilled water at 5$^{\circ}C$ and 55$^{\circ}C$ for 1,000 cycles. The samples were placed on the binder with the bonded compomer-dentin interface parallel to the knife-edge shearing rod of the Universal Testing Machine(Zwick Z020, Zwick Co., Germany) running at a cross head speed or 1.0 mm/min. Group 2 showed significant decrease in shear bond strength compared with group 1 and group 6 showed significant decrease in shear bond strength compared with group 5. There were no significant differences in shear bond strength between group 5 and group 9, 10 and 11.

The Effect on the Microroughness of Si Substrate by Metallic Impurity Ca (금속 불순물 Ca이 Si 기판의 표면 미세 거칠기에 미치는 영향)

  • Choe, Hyeong-Seok;Jeon, Hyeong-Tak
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.491-495
    • /
    • 1999
  • In this study, we focus on Ca contaminant which affects on the roughness Si substrate after thermal process. The initial Si substrates were contaminated intentionally by using a standard Ca solution. The contamination levels of Ca impurity were measured by TXRF and the chemical composition of that was analyzed by AES. Then we gre the thermal oxide to investigate the effect of Ca contaminants. The microroughness of the Si surface, the thermal oxide surface, and the surface after removing the thermal oxide were measured to examine the electrical characteristics. The initial substrates that were contaminated with the standard solution of Ca exhibited the contamination levels of 10\ulcorner~10\ulcorneratoms/$\textrm{cm}^2$ which was measured by TXRF. The Ca contaminants were detected by AES and exhibited the peaks of Ca, SI, C and O.After intentional contamination, the surface microroughness of this initial substrate was increased from $1.5\AA$ to 4$\AA$ as contamination levels became higher. The microroughness of the thermal oxide surfaces of both contaminated and bare Si substrates exhibits similar values. But the microroughness of the contaminated$ Si/SiO_2$ interface was increased as contamination increased. The thermal oxide of contaminated substrate exhibited the small minority carrier diffusion length, low breakdown voltage, and slightly high leakage current.

  • PDF

The characteristics comparison of LV insulated materials based on the salt vaporization and the particulates (저압용 절연재료의 염수분무 및 분진에 따른 특성비교)

  • Shong, Kil-Mok;Kim, Young-Seok;Kim, Sun-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1359-1360
    • /
    • 2007
  • In this paper, it is described the characteristics comparison of LV insulated materials contaminated by the salt vaporization and the particulates. The contact angle of normal PVC is measured $75^{\circ}$ but its of PVC contaminated by the salt vaporization for 500 hours is measured $63^{\circ}$. The contact angle of normal bakelite is measured $66^{\circ}$ but its of bakelite contaminated by the salt vaporization for 500 hours is measured $44^{\circ}$. And the contact angle of normal acrylic resin is measured $65^{\circ}$ but its of acrylic resin contaminated by the salt vaporization for 500 hours is measured $60^{\circ}$. In the surface of insulated materials contaminated by the particulate, the contact angle is decreased. The surface of bakelite is not good as an insulator.

  • PDF

The Effects of Surface Shear Viscosity and Surface Tension on a Columnar Vortex Interacting with a Free Surface (자유표면과 반응하는 수직와류에 대한 표면점성계수와 표면장력의 영향)

  • Kim Kyung-Hoon;Sohn Kwon;Kim Seok-Woo
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.51-57
    • /
    • 2005
  • Vertices terminating at free surface have been investigated extensively. Most of investigations, however, are focused on surface parallel vortices and little has been known about surface normal vortex or columnar vortex. Visualized experimental results utilizing LIF technique are discussed fur the purpose of characterization of columnar vortex interacting with a clean and a contaminated free surfaces and a solid body interface in the present investigation. The results reveal that surface tension changes due to surface contamination although bulk viscosity remains constant and eventually the behavior of a columnar vortex interacting with a contaminated free surface and a solid body interface are totally different from the clean free surface case.

  • PDF

Experiments on Columnar Vortex with Free Surface using LIF (Laser Induced Fluorescence) Technique (유동가시화를 통한 자유표면과 와류 수직반응에 대한 실험적 연구)

  • Kim, S.W.;Kim, K.H.;Lee, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.734-739
    • /
    • 2000
  • Vortices terminating at free surface have been investigated extensively. Most of investigations, however, are focused on surface parallel vortices and little has been known about surface normal vortex or columnar vortex. Visualized experimental results utilizing LIF technique are discussed for the purpose of characterization of columnar vortex interacting with a clean and a contaminated free surfaces in the present investigation. The results reveal that surface tension changes due to surface contamination although bulk viscosity remains constant and eventually the behavior of a columnar vortex interacting with a contaminated free surface is totally different from the clean free surface case.

  • PDF

Development and Decay of Columnar Vortex in Two Phases Interface; Gas/Liquid, Solid/Liquid (기/액, 고/액 2상 경계면에서의 수직와류의 성장과 소멸)

  • Kim, K.H.;Yang, S.Y.;Park, M.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.241-246
    • /
    • 2001
  • Vortices terminating at free surface have been investigated extensively. Most of investigations, however, are focused on surface parallel vortices and little has been known about surface normal vortex or columnar vortex. Visualized experimental results utilizing LIF technique are discussed for the purpose of characterization of columnar vortex interacting with a clean and a contaminated free surfaces and a solid body interface in the present investigation. The results reveal that surface tension changes due to surface contamination although bulk viscosity remains constant and eventually the behavior of a columnar vortex interacting with a contaminated free surface and a solid body interface are totally different from the clean free surface case.

  • PDF

Development and Decay of Columnar Vortex in two faces interface ; gas/liquid and solid/liquid

  • Lee, Seung-Hwan;Kim, Kyung-Hoon;Kim, Seok-Woo
    • Journal of ILASS-Korea
    • /
    • v.6 no.2
    • /
    • pp.29-36
    • /
    • 2001
  • Vortices terminating at free surface have been investigated extensively. however. are focused on surface parallel vortices and little has been known about surface normal vortex or columnar vortex. Visualized experimental results utilizing LlF technique are discussed for the purpose of characterization of columnar vortex interacting with a clean and a contaminated free surfaces and a solid body interface in the present investigation. The results reveal that surface tension changes due to surface contamination although bulk viscosity remains constant and eventually the behavior of a columnar vortex interacting with a contaminated free surface and a solid body interface are totally different from the clean free surface case.

  • PDF

A Study on Vortex Pair Interaction with Fluid Free Surface

  • Kim, K.H.;Kim, S.W.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.26-31
    • /
    • 2005
  • Today, the research to examine a fact that interaction between the air and the fluid free surface affects the steady state flow and air. We proved the interaction between vortex pairs and free surface on each condition that is created by the end of delta wings. Another purpose of this study is to investigate the effect of surface active material which call change the surface tension and we must consider when we refer to turbulent flow on surface tension. Therefore, this research examined the growth process of vortex pairs on condition of clean, contaminated free surface and wall after we made vortex pairs through counter rotating flaps. The results of this study suggest that vortex pairs in clean free surface rise safely but the vortex pairs in contaminated free surface and rigid, no slip is made secondary vortex or rebounding. However the secondary vortex in rigid, no slip is stronger than before. and we can find the vortex shape which roll up more completely. However, these will disappear by the effect of wall.

  • PDF

EFFECT OF SURFACE CONTAMINATION ON THE TRANSVERSE STRENGTH OF THE RELINED DENTURE (첨상면 오염이 레진 의치상의 파절강도에 미치는 영향)

  • Kim, Jeong-Hyun;Bae, Jung-Soo;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.1
    • /
    • pp.11-18
    • /
    • 1993
  • Autopolymerising and visible light cured resin are used to reline dentures. But relined surface are easily contaminated by water or saliva in the mouth during clinical procedure. This study was to find out the effect of surface contamination on the transverse strength of the relined denture base. To accomplish this, the specimens of $65\times10\times3mm$ were made with heat-cured(Lucitone 199), visible light-cured(Triad), and autopolymerizing resin(Kooliner). Measurements of transverse strength were taken for each specimen. Specimens made of heat-cured resins, sizing $65\times10\times1.5mm$, were relined with heat-cured, light-cured, and autopolymerizing resin, respectively. Specimens relined with autopolymerizing and light-cured resins were further classified into not-contaminated, water-contaminated and saliva-contaminated groups. Again, measurements of the transverse strength were taken for each group. The results were as follows 1. The transverse strength of heat-cured resin was superior to all the other resins. 2. The transverse strength of each specimen decreased after relining in the following order, heat-cured, visible light-cured, and autopolymerizing resin. 3. Surface contamination produced an decrease in transverse strength, especially in the saliva contaminated group. According to these results, water or saliva contamination should be avoided during intraoral relining procedures.

  • PDF