• Title/Summary/Keyword: Contaminated air

Search Result 324, Processing Time 0.032 seconds

Applicability of Washing Techniques Coupled with High-Pressure Air Jet for Petroleum-contaminated Soils (고압공기분사를 이용한 유류오염토양 세척기법의 적용성 연구)

  • Choi, Sang-Il;Kim, Kang-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.61-68
    • /
    • 2006
  • Soil washing techniques coupled with high pressure air jet were applied for diesel-contaminated soils sampled by an underground oil reservoir of which the initial total petroleum hydrocarbon (TPH) ($2,828{\pm}206\;mg/kg$) exceeded 5 times of current standard level (500 mg/kg) regulated by the Soil-Environment Conservation Law. Through several tests, we found that the position of impeller has a critical impact for washing efficiencies. The highest washing efficiency was obtained at an oblique angle (30 degree) for the impeller and optimized mixing speed (300 rpm) that could have high shearing forces. Considered economical and feasible aspects, the optimum mixing time was 10 min. Rate constants of TPH removal derived from the first-order equation were not linearly increased as mixing speed increased, indicating that mechanical mixing has some limits to enhance the washing efficiencies. Application of high-pressure air jet in washing process increased the washing efficiency. This increase might be caused by the fact that the surface of micro-air bubbles strongly attached hydrophobic matters of soil particles. As the pressure of air jet increased, the separation efficiencies of TPH-contaminated soil particles increased. In the combined process of high-pressure air jet and mixing by impeller, the optimum mixing speed and air flow-rate were determined to be 60 rpm and $2\;kg/cm^2$, respectively. Consequently, the washing technique coupled with high-pressure air jet could be considered as a feasible application for remediating petroleum-contaminated soils.

Analysis of Microbial Community in the TPH-Contaminated Groundwater for Air Sparging using Terminal-Restriction Fragment Length Polymorphism (유류오염대수층 공기분사공정상의 미생물 제한효소다형성법 적용 평가)

  • Lee, Jun-Ho;Lee, Sang-Hoon;Cho, Jae-Chang;Park, Kap-Song
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.590-598
    • /
    • 2006
  • In-situ Air sparging (IAS) is a groundwater remediation technique, in which organic contaminants volatilize into air form the saturated to vadose zone. This study was carried out to evaluate the effect of sludge and soil microbial community structure on air sparging of Total Petroleum Hydrocarbons (TPH) contaminated groundwater soils. In the laboratory, diesel (10,000 mg TPH/kg) contaminated saturated soil. The Air was injected in intermittent (Q=1500 mL/min, 10 minute injection and 10 minute idle) modes. For Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis of eubacterial communities in sludge of wastewater treatment plants and soil of experiment site, the 16S rDNA was amplified by Polymerase Chain Reaction (PCR) from the sludge and the soil. The obtained 16S rDNA fragments were digested with Msp I and separated by electrophoresis gel. We found various sequence types for experiment with sludge soil samples that were closely related to Agrococcus, Flavobacterium, Thermoanaerobacter, Flexibacter and Shewanella, etc, in the clone library. The results of the present study suggests that T-RFLP method may be applied as a useful tool for the monitoring in the TPH contaminated soil the fate of microorganisms in natural microbial community.

Study on the Optimal Velocity of Horizontal Air Jet of a Range hood system (주방용 후드 수평급기의 최적속도 결정에 관한 연구)

  • Kim, Sang-Gyu;Park, Sung-Geun;Yong, Ho-Taek;Kim, Dong-Yoon;Choi, Hyoung-Gwon
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.63-68
    • /
    • 2005
  • In the present paper, the study on the optimal horizontal air jet velocity of a range hood system has been studied by three dimensional numerical simulation. It has been shown that the air jet of a range flood system generates coanda effect confining the contaminated (high temperature) air in a certain region while the jet pushes out more contaminated air into a room as the jet velocity increases. Therefore, the optimal jet velocity has been determined by the combination of the two mechanism.

  • PDF

Environmental Source of Arsenic Exposure

  • Chung, Jin-Yong;Yu, Seung-Do;Hong, Young-Seoub
    • Journal of Preventive Medicine and Public Health
    • /
    • v.47 no.5
    • /
    • pp.253-257
    • /
    • 2014
  • Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

Technology of VOC Removal in Air by Biotrickling Filter (생물살수여과법을 이용한 공기 중 VOC 제거 기술)

  • ;Marc A. Deshusses
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.101-112
    • /
    • 2003
  • Biological methods are frequently used for treatment of contaminated air, containing volatile organic compounds and odor compounds in low concentrations and high flow rate of air streams. For more than 20 years. biofilter has been recognized as a cost effective technology for the purification of contaminated air. Most commercial applications before 1990 were for control of odors. In the past decades major progress has been accomplished in the development of vapor phase bioreactor. in particular biotrickling filers. Biotrickling filters are more complex than biofilters. but are usually more effective, especially for the treatment of compounds which are difficult to degrade or compounds that generate acidic by-products. While the level of understanding of biotrickling filtration process for VOCs still remains limited. the evidence success of biotreatment of VOC in air resulted in pursuing active research. This paper presents fundamental and practical aspert of VOCs treatment from air in biotrickling filter. Special emphasis is given to the operating parameters and the factors influencing performance for biotrickling filter.

Removal of Volatile Organic Contaminant(toluene) from Specific Depth in Aquifer Using Selective Surfactant-Enhanced Air Sparging (계면활성제와 폭기를 이용한 대수층의 특정깊이에 존재히는 휘발성 유기오염물질 (톨루엔)의 휘발제거)

  • Song, Young-Su;Kwon, Han-Joon;Yang, Su-Kyeong;Kim, Heon-Ki
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.565-571
    • /
    • 2010
  • An innovative application of surfactant-enhanced air sparging(SEAS) technique was developed in this study. Using a laboratory-scale physical model packed with water-saturated sand, air sparging was implemented to remove water-dissolved toluene that was introduced into a specific depth of the system with finite vertical width prior to sparging. An anionic surfactant(Sodium dodecylbenzene sulfonate) was introduced into the contaminated layer as in dissolved form in the toluene-contaminated solution for SEAS, whereas no surfactant was applied in the control experiment. Due to the suppressed surface tension of water in the surfactant(and toluene)-containing region, the toluene removal rate increased significantly compared to those without surfactant. More than 70% of the dissolved toluene was removed from the contaminated layer for SEAS application while less than 20% of toluene was removed for the experiment without surfactant. Air intrusion into the contaminated layer during sparging was found to be more effective than that without surfactant, enhancing air contact with toluene-contaminated water, which resulted in improved volatilization of contaminant. This new method is expected to open a new option for remediation of VOC(volatile organic compound)-contaminated aquifer.

공기 주입량 및 주입모드가 바이오벤팅의 처리효율에 미치는 영향

  • 박준석;안병구;류두현;신헌균;최민주;김영석;박종은
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.315-318
    • /
    • 2002
  • This study was performed to evaluate the effects of air flow rate and aeration mode on the treatment of bioventing for diesel-contaminated soil. Initial concentrations of diesel-contaminated soils were about 2,500 and 9,000mg/kg. Air flow rates were 30, 60, and 100mL/min, and air was injected in the continuous and the intermittent modes. TPH removal efficiency of intermittent aeration mode was higher than that of continuous aeration mode. Greater air flow rate than the value of guidance book was needed for bioventing.

  • PDF

Calculation of Radius of Influence and Evaluation of Applicability of Air Sparging/Soil Vapor Extraction system for the Remediation of Petroleum Contaminated Rail Site (유류로 오염된 철로지역의 지중정화를 위한 영향반경 산정과 공기주입법/토양증기추출법의 적용성 평가)

  • Cho, Chang-Hwan;Park, Joung-Ku;Kim, Yong-Deok;Seo, Chang-Il;Jin, Hai-Jin;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • The objectives of this study were to calculate the radius of influence (ROI) of well for an air-sparging (AS)/soil vapor extraction (SVE) system and to evaluate the applicability of the system applied for the remediation of the petroleum contaminated rail site. For air permeability test, three monitoring wells were installed at a location of 1.3 m, 2.3 m, 3.0 m from the extraction well. And the pressure of each monitoring well was measured by extracting air from the extraction well with the pressure and flow of $(-)2,600mmH_2O$ and $1.58m^3/min$. The ROI for an extraction well was calculated as 4.31 m. Air was injected into the injection well with the pressure and flow of $3,500mmH_2O$ and $0.6m^3/min$ to estimate the radius of influence for oxygen transfer. Oxygen concentrations of air from three monitoring wells were measured. The ROI of an injection well for oxygen transfer was calculated as 3.46 m. The 28 extraction wells and 19 injection wells were installed according to the ROI calculated. The AS/SVE system was operated eight hours a day for five months. The rail site was contaminated with the petroleum and concentrations of benzene, toluene, and xylene were over the 'Worrisome Standard' of the 'Soil Environment Conservation Act'. The contaminated area was estimated as $732m^2$ and contaminants were dispersed up to (-)3 m from the ground. During the operation period, soil samples were collected from 5 points and analyzed periodically. With the AS/SVE system operation, concentrations of benzene, toluene, and xylene were decreased from 7.5 mg/kg to 2.0 mg/kg, from 32.0 mg/kg to 23.0 mg/kg, from 35.5 mg/kg to 23.0 mg/kg, respectively. The combined AS/SVE system applied to the rail site contaminated with volatile organic compounds (VOCs) exhibited a high applicability. But the concentration of contaminants in soil were fluctuated due to the heterogeneous of soil condition. Also the effect of the remediation mechanisms was not clearly identified.

Characteristics of Air Pollution at a Junction Area Contaminated with Vehicle Emissions (자동차 배출가스에 의한 도심 교차로의 대기오염 특징)

  • Lee, Seung-Bok;Bae, Gwi-Nam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.48-53
    • /
    • 2010
  • Roadside measurement of ultrafine particles, black carbon, and NOx was carried out to investigate air pollution at a junction area contaminated with vehicle emissions in Seoul from March 19 to 23, 2007. Diurnal variation of ultrafine particles, black carbon, and $NO_x$ concentrations at a roadside showed minimum at around 2-4 a.m. and two peak modes during the morning and evening rush hours. Since these pollutants might be mainly emitted from vehicles, the roadside was highly contaminated with vehicles.

A Study on Potential of Aquatic Plants to Remove Indoor Air Pollutants (실내오염물질 정화를 위한 수생식물의 이용가능성에 관한 연구)

  • Park, Soyoung;Kim, Jeoung;Jang, Young-Kee;Sung, Kijune
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.5
    • /
    • pp.1-9
    • /
    • 2005
  • This study was conducted to investigate the effect of aquatic plant as a botanical air purification on the indoor air pollution by formaldehyde. Three aquatic plants such as Eichhornia crassipes, Cyperus alternifolius, Echinodorus cordifolius, were selected for this study and they were placed in the artificially contaminated chamber under laboratory condition. The results showed that all three plants could remove the formaldehyde from the contaminated air system effectively. Reduction in the formaldehyde levels by Eichhornia crassipes, which is the floating plant, might be associated with the factors of plant and water. Reduction in the formaldehyde levels by Cyperus helferi and Echinodorus cordifolius, which were emergent plant, was due to the complex effect of plant, soil medium and water. In aquatic plant system, dissolution, microbial degradation in rhizosphere, uptake through root and shoot, sorption to soil and shoot, hydrolysis are known as the main mechanisms of water soluble pollutants in the given system. The advantages of indoor air quality control system using aquatic plants can be; 1) various purifying mechanisms than foliage plants, 2) effective for decontamination of water soluble pollutants; 3) easy for maintenance; 4) diverse application potential. Therefore it was suggested from the results that indoor air control system of aquatic plants should be more effective for reduction of indoor air pollutants.