• Title/Summary/Keyword: Contaminated Process

Search Result 688, Processing Time 0.03 seconds

IMM Algorithm with NPHMM for Speech Enhancement (음성 향상을 위한 NPHMM을 갖는 IMM 알고리즘)

  • Lee, Ki-Yong
    • Speech Sciences
    • /
    • v.11 no.4
    • /
    • pp.53-66
    • /
    • 2004
  • The nonlinear speech enhancement method with interactive parallel-extended Kalman filter is applied to speech contaminated by additive white noise. To represent the nonlinear and nonstationary nature of speech. we assume that speech is the output of a nonlinear prediction HMM (NPHMM) combining both neural network and HMM. The NPHMM is a nonlinear autoregressive process whose time-varying parameters are controlled by a hidden Markov chain. The simulation results shows that the proposed method offers better performance gains relative to the previous results [6] with slightly increased complexity.

  • PDF

Soil Washing Coupled with the Magnetic Separation to Remediate the Soil Contaminated with Metal Wastes and TPH (자력선별과 토양세척법을 연계하여 금속폐기물과 TPH로 복합 오염된 토양 동시 정화)

  • Han, Yikyeong;Lee, Minhee;Wang, Sookyun;Choi, Wonwoo
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • Batch experiments for the soil washing coupled with the magnetic separation process were performed to remediate the soil contaminated with metal and oil wastes. The soil was seriously contaminated by Zn and TPH (total petroleum hydrocarbon), of which concentrations were 1743.3 mg/kg and 3558.9 mg/kg, respectively, and initial concentrations of Zn, Pb, Cu, and TPH were higher than the 2nd SPWL (soil pollution warning limit: remediation goal). The soil washing with acidic solution was performed to remove heavy metals from the soil, but Pb and Zn concentration of the soil maintained higher than the 2nd SWPL even after the soil washing with acidic solution. The 2nd soil washing was repeated to increase the Pb and Zn removal efficiency and the Zn and Pb removal efficiencies additionally increased by only 8 % and 5 %, respectively, by the 2nd soil washing (> 2nd SPWL). The small particle separation from the soil was conducted to decrease the initial concentration of heavy metals and to increase the washing effectiveness before the soil washing and 4.1 % of the soil were separated as small particles (< 0.075 mm in diameter). The small particle separation lowered down Zn and Pb concentrations of soil to 1256.3 mg/kg (27.9 % decrease) and 325.8 mg/kg (56.3 % decrease). However, the Zn concentration of soil without small particles still was higher than the 2nd SPWL even after the soil washing, suggesting that the additional process is necessary to lower Zn concentration to below the 2nd SPWL after the treatment process. As an alternative process, the magnetic separation process was performed for the soil and 16.4 % of soil mass were removed, because the soil contamination was originated from unreasonable dumping of metal wastes. The Zn and Pb concentrations of soil were lowered down to 637.2 mg/kg (63.4 % decrease) and 139.6 mg/kg (81.5 % decrease) by the magnetic separation, which were much higher than the removal efficiency of the soil washing and the particle separation. The 1st soil washing after the magnetic separation lowered concentration of both TPH and heavy metals to below 2nd SPWL, suggesting that the soil washing conjugated with the magnetic separation can be applied for the heavy metal and TPH contaminated soil including high content of metal wastes.

Sorption Efficiency of the Bamboo Charcoal to Remove the Cesium in the Contaminated Water System (오염수계 내 세슘 제거를 위한 대나무 활성탄의 흡착효율 규명)

  • Ahn, Joungpil;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.87-97
    • /
    • 2018
  • The cesium (Cs) removal from the contaminated water system has been considered to be difficult because the cesium likes to exist as soluble phases such as ion and complexes than the solid in water system. Many researches have focused on developing the breakthrough adsorbent to increase the cesium removal efficiency in water. In this study, the laboratory scale experiments were performed to investigate the feasibility of the adsorption process using the bamboo charcoal for the Cs contaminated water system. The Cs removal efficiency of the bamboo charcoal were measured and the optimal adsorption conditions were determined by the adsorption batch experiments. Total 5 types of commercialized bamboo charcoals in Korea were used to identify their surface properties from SEM-EDS and XRD analyses and 3 types of bamboo charcoals having large specific surface areas were used for the adsorption batch experiment. The batch experiments to calculate the Cs removal efficiency were performed at conditions of various Cs concentration (0.01 - 10 mg/L), pH (3 - 11), temperature ($5-30^{\circ}C$), and adsorption time (10 - 120 min.). Experimental results were fitted to the Langmuir adsorption isotherm curve and their adsorption constants were determined to understand the adsorption properties of bamboo charcoal for Cs contaminated water system. From results of SEM-EDS analyses, the surfaces of bamboo charcoal particles were composed of typical fiber structures having various pores and dense lamella structures in supporting major adsorption spaces for Cs. From results of adsorption batch experiments, the Cs-133 removal efficiency of C type bamboo charcoal was the highest among those of 3 bamboo charcoal types and it was higher than 75 % (maximum of 82 %) even when the initial Cs concentration in water was lower than 1.0 mg/L, suggesting that the adsorption process using the bamboo charcoal has a great potential to remove Cs from the genuine Cs contaminated water, of which Cs concentration is low (< 1.0 mg/L) in general. The high Cs removal efficiency of bamboo charcoal was maintained in a relatively wide range of temperatures and pHs, supporting that the usage of the bamboo charcoal is feasible for various types of water. Experimental results were similar to the Langmuir adsorption model and the maximum amount of Cs adsorption (qm:mg/g) was 63.4 mg/g, which was higher than those of commercialized adsorbents used in previous studies. The surface coverage (${\theta}$) of bamboo charcoal was also maintained in low when the Cs concentration in water was < 1.0 mg/L, investigating that the Cs contaminated water can be remediated up with a small amount of bamboo charcoal.

A Study on Laboratory Treatment of Metalworking Wastewater Using Ultrafiltration Membrane System and Its Field Application (한외여과막시스템을 이용한 금속가공폐수의 실험실적 처리 및 현장 적용 연구)

  • Bae, Jae Heum;Hwang, In-Gook;Jeon, Sung Duk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.487-494
    • /
    • 2005
  • Nowadays a large amount of wastewater containing metal working fluids and cleaning agents is generated during the cleaning process of parts working in various industries of automobile, machine and metal, and electronics etc. In this study, aqueous or semi-aqueous cleaning wastewater contaminated with soluble or nonsoluble oils was treated using ultrafiltration system. And the membrane permeability flux and performance of oil-water separation (or COD removal efficiency) of the ultrafiltration system employing PAN as its membrane material were measured at various operating conditions with change of membrane pore sizes and soil concentrations of wastewater and examined their suitability for wastewater treatment contaminated with soluble or insoluble oil. As a result, in case of wastewater contaminated with soluble oil and aqueous or semi-aqueous cleaning agent, the membrane permeability increased rapidly even though COD removal efficiency was almost constant as 90 or 95% as the membrane pore size increased from 10 kDa to 100 kDa. However, in case of the wastewater contaminated with nonsoluble oil and aqueous or semi-aqueous cleaning agent, as the membrane pore size increased from 10 kDa to 100 kDa and the soil concentration of wastewater increased, the membrane permeability was reduced rapidly while COD removal efficiency was almost constant. These phenomena explain that since the membrane material is hydrophilic PAN material, it blocks nonsoluble oil and reduces membrane permeability. Thus, it can be concluded that the aqueous or semi-aqueous cleaning solution contaminated with soluble oil can be treated by ultrafiltration system with the membrane of PAN material and its pore size of 100 kDa. Based on these basic experimental results, a pilot plant facility of ultrafiltration system with PAN material and 100 kDa pore size was designed, installed and operated in order to treat and recycle alkaline cleaning solution contaminated with deep drawing oil. As a result of its field application, the ultrafiltration system was able to separate aqueous cleaning solution and soluble oil effectively, and recycle them. Further more, it can increase life span of aqueous cleaning solution 12 times compared with the previous process.

A Study on the Space Planing for Restaurant Kitchens to Improve Hygiene (식당 주방의 위생 향상을 위한 공간계획에 관한 연구)

  • Lee, Jong-Ran
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.1
    • /
    • pp.5-13
    • /
    • 2011
  • This research proposed the space planing methode and diagrams of restaurant kitchens to improve hygiene by analyzing the related contents collected from books and researches in interior design and HACCP (Hazard Analysis and Critical Control Point). HACCP is an effective and scientific hygiene system for food safety in order to prevent cross-contamination from food hazards. Based on the analyses, improvement of food production environments like restaurant kitchens is necessary for food hygiene. The space planing methode of restaurant kitchens to improve hygiene are followings: The circulation planing is that the direction of movement of the food, workers, waste, and dishes should be fractionated and managed for cross-contamination prevention. The space separation planing is that the spaces in the kitchen should be classified and divided into contaminated area and non-contaminated and clean area depending on the degree of cleanliness. The zoning is space arrangement with feed-back process to check the possible points of cross-contamination and correct space arrangement until the possibility of cross-contamination disappear in kitchen. However, if cross-contamination is unavoidable in some points in restaurant kitchens, hygiene facilities such as washing rooms, pass rooms, and double doors with air-shower should be located in order to remove contamination.

Copper Particle Effect on the Breakdown Strength of Insulating Oil at Combined AC and DC Voltage

  • Wang, You-Yuan;Li, Yuan-Long;Wei, Chao;Zhang, Jing;Li, Xi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.865-873
    • /
    • 2017
  • Converter transformer is the key equipment of high voltage direct current transmission system. The solid suspending particles originating from the process of installation and operation of converter transformer have significant influence on the insulation performance of transformer oil, especially in presence of DC component in applied voltage. Under high electric field, the particles easily lead to partial discharge and breakdown of insulating oil. This paper investigated copper particle effect on the breakdown voltage of transformer oil at combined AC and DC voltage. A simulation model with single copper particle was established to interpret the particle effect on the breakdown strength of insulating oil. The experimental and simulation results showed that the particles distort the electric field. The breakdown voltage of insulating oil contaminated with copper particle decreases with the increase of particle number, and the breakdown voltage and the logarithm of particle number approximately satisfy the linear relationship. With the increase of the DC component in applied voltage, the breakdown voltage of contaminated insulating oil decreases. The simulation results show that the particle collides with the electrode more frequently with more DC component contained in the applied voltage, which will trigger more discharge and decrease the breakdown voltage of insulating oil.

Effect of cyclodextrin glucanotransferase enzyme in biodegradation of diesel oil

  • Sivaraman, C.;Ganguly, Anasuya;Mutnuri, Srikanth
    • Advances in environmental research
    • /
    • v.1 no.2
    • /
    • pp.97-108
    • /
    • 2012
  • Microbial degradation of hydrocarbons is found to be an attractive process for remediation of contaminated habitats. However the poor bioavailability of hydrocarbons results in low biodegradation rates. Cyclodextrins are known to increase the bioavailability of variety of hydrophobic compounds. In the present work we purified the Cyclodextrin Glucanotransferase (CGTase) enzyme which is responsible for converting starch into cyclodextrins and studied its role on biodegradation of diesel oil contaminated soil. Purification of CGTase from Enterobacter cloacae was done which resulted in 6 fold increase in enzyme activity. The enzyme showed maximum activity at pH 7, temperature $60^{\circ}C$ with a molecular weight of 66 kDa. Addition of purified CGTase to the treatment setup with Pseudomonas mendocina showed enhanced biodegradation of diesel oil ($57{\pm}1.37%$) which was similar to the treatment setup when added with Pseudomonas mendocina and Enterobacter cloacae ($52.7{\pm}6.51%$). The residual diesel oil found in treatment setup added with Pseudomonas mendocina at end of the study was found to be $73{\pm}0.21%$. Immobilization of Pseudomonas mendocina on alginate containing starch also led to enhanced biodegradation of hydrocarbons in diesel oil at 336 hours.

Removal of Cadmium from Clayey Soil by Electrokinetic Method

  • Niinae, Masakazu;Sugano, Tsuyoshi;Aoki, Kenji
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.91-96
    • /
    • 2001
  • Restoration of contaminated soils to an environmentally acceptable condition is important. One of the newer techniques in soil remediation is a method based on electrokinetic phenomena in soils. The technology uses electricity to affect chemical concentrations and water flow through the pores of soils. An important advantage of electrokinetic soil remediation over other in-situ processes such as soil flushing is the capability of control over the movement of the contaminants. Because the migration of the contaminants is confined by the electric field, there is little dispersion outside the treatment zone. Furthermore, the process is effective for soils with low and variable permeability. In the present study, the distributions of cadmium in the electrokinetic processing of kaolinite under the condition of constant applied voltage are investigated. Cadmium accumulates near the cathode without reducing the diffusion of hydroxide ion into the soil. In keeping the catholyte pH at neutrality, cadmium migrates toward the cathode without any accumulation of cadmium near the cathode and is successfully removed at the cathode reservoir. It was also found that the progress of electrokinetic processing of cadmium could be gasped to a certain extent by monitoring the local voltage and the current density.

  • PDF

Evaluation of Portable Slipmeter using Human Perception (인간의 인지적 감각을 이용한 휴대용 미끄럼 측정기의 성능평가)

  • Choi, Hyung Jin;Kim, Jung Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.267-271
    • /
    • 2014
  • The objectives of this study were to evaluate the safe criteria of portable slipmeter using human perception onto the several different floor surfaces under contaminated conditions. It was difficult to find why many different slipmeters took there's own safe criteria. It is still unclear how thres hold values established in many literatures. Two different subjective slippery evaluating methods, AHP(Analytic Hierarchy Process) and Friedman test,were used to evaluate the perception of slipperiness of seven different floor surfaces under the contaminated condition with detergent solution. Twelve subjects worn same footwear and walked with self-selected step and cadence along the test floors. The SCOF(Static Coefficient of Friction) obtained for same test conditions with BOT-3000 was compared to perception of slipperiness to establish as a safe criteria. The very high significant correlation(r=0.97) was found between AHP and Friedman test. Also, The high significant correlation(r=0.96) was found between AHP and SCOF obtained with BOT-3000. The results suggested that the SCOF should be greater than 0.63 for safer walking. Perception rating obtained with AHP showed a high correlation with Friedman test and the SCOF obtained with BOT-3000 except for polished tile floor. The safe criteria obtained through this study were similar to ANSI/NFSIB101.1.

Towards More Efficient Energy Use for Green Remediation (녹색정화를 위한 에너지의 효율적 이용)

  • Hwang, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.95-100
    • /
    • 2009
  • Strategies incorporating more efficient energy use into remediation of contaminated sites, which are those of important elements in green remediation, are developed and discussed in this work. Firstly, from several case studies of remedial actions in Korea, thermal desorption and/or in-situ method including pump-and-treat were found energy intensive and soil washing less intensive. In order to use energy efficiently and minimize use of fossil fuels during land revitalization process, it is necessary to optimize energy intensive systems, to use low energy remediation systems (such as bioremediation), and to integrate renewable energy sources. Furthermore, economic incentive systems such as subsidy need to be adopted if renewable energy sources are incorporated into remediation of contaminated sites.