• Title/Summary/Keyword: Containment Safety

Search Result 288, Processing Time 0.022 seconds

Composition and Use of Biosafety Level 3 Facility (생물안전 3등급 연구시설의 구성 및 이용)

  • Kim, Changhwan;Hur, Gyeunghaeng;Lee, Wangeol;Jung, Seongtae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.335-342
    • /
    • 2015
  • Laboratory facilities for biology are designed as biosafety level 1, biosafety level 2, biosafety level 3, and biosafety level 4. Biosafety level designations are based on a composite of the design features, construction, containment facilities, equipment, practice and operation procedures required for working with agents from the various risk groups. Generally, biosafety level 3 means the facility that is appropriate for the experiments using pathogens which can cause serious diseases by aerosol transmission. The biosafety level assigned for the specific work to be done is driven by professional judgement based on a risk assessment, rather than by automatic assignment according to the particular risk group designation of the pathogenic agents to be used. In this paper, we introduced the biosafety level 3 facility operated in ADD(Agency for defense development). It contains the overview of facility, microbiological experiment, animal experiment, decontamination and waste disposal. Biosafety level 3 laboratory in ADD has served the vital role in the research of biological agents and antidote development.

Kimchi Packaging Technology: An Overview

  • Jeong, Suyeon;Yoo, SeungRan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.22 no.3
    • /
    • pp.41-47
    • /
    • 2016
  • This paper provides an overview of kimchi packaging technology, focusing on packaging materials, package design, and active/intelligent packaging technology for kimchi. From a packaging-material standpoint, although various materials have been used to ensure customer satisfaction and convenience, plastic is the most widely used material, in the form of bags, trays, pouches, and rigid containers. Additionally, recent efforts in the kimchi packaging industry have allowed companies to differentiate their products by using different packaging materials and technologies, while simultaneously improving product safety and quality. On the other hand, the biggest problem in kimchi packaging is excess $CO_2$ production, leading to package expansion and leakage. To alleviate this problem, the use of $CO_2$ absorbers, high $CO_2$-permeable films, and degassing valves, in addition to the use of different packaging systems, has been investigated. Active and/or intelligent packaging systems have been developed, to include active functions beyond simply inert, passive containment and protection of the kimchi product. However, most such approaches are not yet adequately effective to be useful on a commercial scale. Therefore, further studies are needed to resolve the limitations of each technology.

Development of Ceramic Humidity Sensor for the Korean Next Generation Reactor

  • Lee, Na-Young;Hwang, Il-Soon;Yoo, Han-Ill;Song, Chang-Rock;Park, Sang duk;Yang, Jun-Seog
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.199-206
    • /
    • 1997
  • For the Korean Next Generation Reactor(KNGR) development, LBB is considered for the Main Steam Line(MSL) piping inside its containment to achieve cost and safety Improvement. To apply LBB concept to MSL, leak sensors highly sensitive to humidity is required. In this paper, a ceramic material, MgCr$_2$O$_4$-TiO$_2$ has been developed as a humidity sensor for MSL applications. Experiments peformed to characterize the electrical conductivity shows that the conductivity of MgCr$_2$O$_4$-TiO$_2$ responds sensitively to both temperature and humidity changes. At a constant temperature below 10$0^{\circ}C$, the conductivity increases as the relative humidity increases, which makes the sensor favorable for application to the outside of MSL insulation layer But as temperature increases beyond 10$0^{\circ}C$, the sensor composition should be adjusted for the application to KNGR is to be made at temperature above 10$0^{\circ}C$.

  • PDF

Computational Study of the Mixed Cooling Effects on the In-Vessel Retention of a Molten Pool in a Nuclear Reactor

  • Kim, Byung-Seok;Ahn, Kwang-Il;Sohn, Chang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.990-1001
    • /
    • 2004
  • The retention of a molten pool vessel cooled by internal vessel reflooding and/or external vessel reactor cavity flooding has been considered as one of severe accident management strategies. The present numerical study investigates the effect of both internal and external vessel mixed cooling on an internally heated molten pool. The molten pool is confined in a hemispherical vessel with reference to the thermal behavior of the vessel wall. In this study, our numerical model used a scaled-down reactor vessel of a KSNP (Korea Standard Nuclear Power) reactor design of 1000 MWe (a Pressurized Water Reactor with a large and dry containment). Well-known temperature-dependent boiling heat transfer curves are applied to the internal and external vessel cooling boundaries. Radiative heat transfer has been considered in the case of dry internal vessel boundary condition. Computational results show that the external cooling vessel boundary conditions have better effectiveness than internal vessel cooling in the retention of the melt pool vessel failure.

Study of Air Clearing during Severe Transient of Nuclear Reactor Coolant System (원자로 사고 또는 과도상태시 공기방출현상에 대한 연구)

  • Bae Yoon Yeong;Kim Hwan Yeol;Song Chul-Hwa;Kim Hee Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.835-838
    • /
    • 2002
  • An experiment has been performed using a facility, which simulates the safety depressurization system (SDS) and in-containment refueling water storage tank (IRWST) of APR1400, an advanced PWR being developed in Korea, to investigate the dynamic load resulting from the blowdown of steam from a steam generator through a sparser. The influence of the key parameters, such as air mass, steam pressure, submergence, valve opening time, and pool temperature, on frequency and peak toads was investigated. The blowdown phenomenon was analyzed to find out the real cause of the initiation of bubble oscillation and discrepancy in frequencies between the experiment and calculation by conventional equation for bubble oscillation. The cause of significant damping was discussed and is presumed to be the highly tortuous flow path around bubble. The Rayleigh-Plesset equation, which is modified by introducing method of image, reasonably reproduces the bubble oscillation in a confined tank. Right after the completion of air discharge the steam discharge immediately follows and it condenses abruptly to provide low-pressure pocket. It may contribute to the negative maximum being greater than positive maximum. The subsequently discharging steam does not play as at the driving force anymore.

  • PDF

Development of Integrity Evaluation System for CANDU Pressure Tube (CANDU 압력관에 대한 건전성 평가 시스템 개발)

  • Kwak, Sang-Log;Lee, Joon-Seong;Kim, Young-Jin;Park, Youn-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.843-848
    • /
    • 2000
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and it's containment vessel. If a flaw is found during the periodic inspection from the pressure tubes, the integrity evaluation must be carried out, and the safety requirements must be satisfied for continued service. In order to complete the integrity evaluation, complicated and iterative calculation procedures are required. Besides, a lot of data and knowledge for the evaluation are required for the entire integrity evaluation process. For this reason, an integrity evaluation system, which provides efficient way of evaluation with the help of attached databases, was developed. The developed system was built on the basis of ASME Sec. XI and FFSG(Fitness For Service Guidelines for zirconium alloy pressure tubes in operating CANDU reactors) issued by the AECL, and covers the delayed hydride cracking(DHC). Various analysis methods are provided for the integrity evaluation of pressure tube. In order to verify the developed system, several case studies have been performed and the results were compared with those from AECL. A good agreement was observed between those two results.

  • PDF

Assessment of steel components and reinforced concrete structures under steam explosion conditions

  • Kim, Seung Hyun;Chang, Yoon-Suk;Cho, Yong-Jin
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.337-350
    • /
    • 2016
  • Even though extensive researches have been performed for steam explosion due to their complex mechanisms and inherent uncertainties, establishment of severe accident management guidelines and strategies is one of state-of-the arts in nuclear industry. The goal of this research is primarily to examine effects of vessel failure modes and locations on nuclear facilities under typical steam explosion conditions. Both discrete and integrated models were employed from the viewpoint of structural integrity assessment of steel components and evaluation of the cracking and crushing in reinforced concrete structures. Thereafter, comparison of systematic analysis results was performed; despite the vessel failure modes were dominant, resulting maximum stresses at the all steel components were sufficiently lower than the corresponding yield strengths. Two failure criteria for the reinforced concrete structures such as the limiting failure ratio of concrete and the limiting strains for rebar and liner plate were satisfied under steam explosion conditions. Moreover, stresses of steel components and reinforced concrete structures were reduced with maximum difference of 12% when the integrated model was adopted comparing to those of discrete models.

CFD simulation of compressible two-phase sloshing flow in a LNG tank

  • Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.31-57
    • /
    • 2011
  • Impact pressure due to sloshing is of great concern for the ship owners, designers and builders of the LNG carriers regarding the safety of LNG containment system and hull structure. Sloshing of LNG in partially filled tank has been an active area of research with numerous experimental and numerical investigations over the past decade. In order to accurately predict the sloshing impact load, a new numerical method was developed for accurate resolution of violent sloshing flow inside a three-dimensional LNG tank including wave breaking, jet formation, gas entrapping and liquid-gas interaction. The sloshing flow inside a membrane-type LNG tank is simulated numerically using the Finite-Analytic Navier-Stokes (FANS) method. The governing equations for two-phase air and water flows are formulated in curvilinear coordinate system and discretized using the finite-analytic method on a non-staggered grid. Simulations were performed for LNG tank in transverse and longitudinal motions including horizontal, vertical, and rotational motions. The predicted impact pressures were compared with the corresponding experimental data. The validation results clearly illustrate the capability of the present two-phase FANS method for accurate prediction of impact pressure in sloshing LNG tank including violent free surface motion, three-dimensional instability and air trapping effects.

Numerical Sloshing Analysis of LNG Carriers in Irregular Waves (실해역 상태를 고려한 LNG 선박의 SLOSHING 해석)

  • Park Jong Jin;Kim Mun Sung;Kim Young Bok;Ha Mun Keun
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.38-43
    • /
    • 2005
  • The present study is concerned with the numerical analysis of the sloshing impact pressure of the Liquefied Natural Gas (LNG) carriers in rough sea. The reliable predictions of the both random tank motions in irregular waves and violent fluid flow in the LNG tanks are required for practical sloshing analysis procedure of LNG carriers. The three-dimensional numerical model adopting SOLA-VOF scheme is used to predict violent free surface movements of LNG tank in irregular motions. For accurate input motion of tank, a three-dimensional panel method program called SSMP (Samsung Ship Motion Program) is applied for seakeeping analysis. Comparison studies of sloshing analysis are carried out for No.2 tank of 138K and 205K LNG carriers to verify the safety of the LNG containment system of the proposed 205K large LNG carrier.

  • PDF

BSL2 Audit and Certification Program: An Effort to Harmonize and to Raise Standards in Both Laboratory Infrastructure and Biosafety Practices in Singapore

  • Tin, Tun;Lee, Kien Wah
    • Biomedical Science Letters
    • /
    • v.22 no.3
    • /
    • pp.65-74
    • /
    • 2016
  • The critical aspects of biosafety and bio-containment have been increasingly important in recent years. Biological agents involved in biological research projects at the Nanyang Technological University (NTU) Singapore are usually those with low risks. Biosafety level 2 or BSL 2 laboratories are widely used. However, biosafety measures which refer to the implementation of laboratory practices and procedures, specific construction features of laboratory facilities and safety equipment must be in place to reduce the exposure of laboratory personnel, the public or the environment to potentially infectious agents or other biological hazards. It is also required to pay more attention to laboratory-acquired infections (LAIs) which may occur in research laboratories, clinical laboratories or animal facilities. BSL 2 audit and certification program is implemented as an internal exercise covering laboratories in the university where biological agents are handled or biological research works are carried out. We have put some efforts to raise biosafety standards university-wide in both laboratory infrastructure and laboratory practices to a higher level. Common audit findings are briefly discussed in this presentation.