• Title/Summary/Keyword: Containment

Search Result 944, Processing Time 0.034 seconds

Effective Thermal Conductivity and Diffusivity of Containment Wall for Nuclear Power Plant OPR1000

  • Noh, Hyung Gyun;Lee, Jong Hwi;Kang, Hie Chan;Park, Hyun Sun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.459-465
    • /
    • 2017
  • The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP) accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM) results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.

Safety analysis of nuclear containment vessels subjected to strong earthquakes and subsequent tsunamis

  • Lin, Feng;Li, Hongzhi
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1079-1089
    • /
    • 2017
  • Nuclear power plants under expansion and under construction in China are mostly located in coastal areas, which means they are at risk of suffering strong earthquakes and subsequent tsunamis. This paper presents a safety analysis for a new reinforced concrete containment vessel in such events. A finite element method-based model was built, verified, and first used to understand the seismic performance of the containment vessel under earthquakes with increased intensities. Then, the model was used to assess the safety performance of the containment vessel subject to an earthquake with peak ground acceleration (PGA) of 0.56g and subsequent tsunamis with increased inundation depths, similar to the 2011 Great East earthquake and tsunami in Japan. Results indicated that the containment vessel reached Limit State I (concrete cracking) and Limit State II (concrete crushing) when the PGAs were in a range of 0.8-1.1g and 1.2-1.7g, respectively. The containment vessel reached Limit State I with a tsunami inundation depth of 10 m after suffering an earthquake with a PGA of 0.56g. A site-specific hazard assessment was conducted to consider the likelihood of tsunami sources.

Implementation of a new empirical model of steam condensation for the passive containment cooling system into MARS-KS code: Application to containment transient analysis

  • Lee, Yeon-Gun;Lim, Sang Gyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3196-3206
    • /
    • 2021
  • For the Korean design of the PCCS (passive containment cooling system) in an innovative PWR, the overall thermal resistance around a condenser tube is dominated by the heat transfer coefficient of steam condensation on the exterior surface. It has been reported, however, that the calculated heat transfer coefficients by thermal-hydraulic system codes were much lower than measured data in separate effect tests. In this study, a new empirical model of steam condensation in the presence of a noncondensable gas was implemented into the MARS-KS 1.4 code to replace the conventional Colburn-Hougen model. The selected correlation had been developed from condensation test data obtained at the JERICHO (JNU Experimental Rig for Investigation of Condensation Heat transfer On tube) facility, and considered the effect of the Grashof number for naturally circulating gas mixture and the curvature of the condenser tube. The modified MARS-KS code was applied to simulate the transient response of the containment equipped with the PCCS to the large-break loss-of-coolant accident. The heat removal performances of the PCCS and corresponding evolution of the containment pressure were compared to those calculated via the original model. Various thermal-hydraulic parameters associated with the natural circulation operation through the heat transport circuit were also investigated.

Uncertainty Analysis of Containment Leak Rate Test System (격납건물 누설 시험장치의 불확실도 평가)

  • Lee, Kwang-Dae;Yang, Seung-Ok;Oh, Eung-Se
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.635-637
    • /
    • 2004
  • The containment of the nuclear power plant is the last barrier of radiation release when the reactor coolant pipe rupture is occurred. Each plant has to be tested every 5 years whether the containment leak rate meets its technical specifications. We have developed the leak rate test system and in this paper, we describe the results of the uncertainty analysis on the measurement channels and its propagation to the calculation results.

  • PDF

Nuclear Material Containment/Surveillance System for Nuclear Facility (핵물질 취급 시설의 격납/감시 시스템)

  • Song, D.Y.;Lee, S.Y.;Kim, H.D.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.490-492
    • /
    • 2005
  • Unattended continuous containment/surveillance systems for safeguards of nuclear facility result in large amounts of image and radiation data, which require much time and effort to inspect. Therefore, it is necessary to develop system that automatically pinpoints and diagnoses the anomalies from data. In this regards, this paper presents the nuclear material containment/surveillance system that integrates visual image and radiation data.

  • PDF

Analysis of Seismic Performance of Modular Containment Structure for Small Modular Reactor (소형 원자로용 모듈화 격납구조의 내진성능 분석)

  • Park, Woo-Ryong;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.409-416
    • /
    • 2020
  • The seismic performance of a containment structure should be secured to maintain the structural soundness of a containment structure under various earthquakes that occur globally. Therefore, an analysis of the seismic performance of a modular containment structure for a small modular reactor is also required. To analyze the seismic performance of modular containment, FEM models with contact surfaces between the modules and tendon were prepared and the modal and seismic analyses were performed. The displacement, stress, and gap size of modular containment under earthquake wave were analyzed. The effects of the tendon force, friction coefficient, and earthquake wave on the seismic performance were analyzed. The seismic performance of monolithic containment was also analyzed for comparison. In the 1st and 2nd natural modes, which most likely affect, the modular containment showed horizontal dynamic behavior, which is similar to monolithic containment, because of the combined effects of the tendon force and friction force between modules. When the combined effect is sufficient, the seismic performance of the modular containment is secured over a certain level. An additional increase in seismic performance is expected when some material with a larger friction coefficient is adopted on the contact surface.

A Large Dry PWR Containment Response Analysis for Postulated Severe Accidents (가상적 중대사고에 대한 대형건식 가압경수로 격납용기의 반응해석)

  • Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.292-309
    • /
    • 1987
  • A large dry PWR containment response analysis for postulated severe accidents was performed as part of the Zion Risk Rebaselining study for input to the U.S. NRC's "Reactor Risk Reference Document," NUREG-1150. The Methodologies used in the present work were developed as part of the Severe Accident Risk Reduction Program (SARRP) at Sandia National Laboratory specifically for the Surry Plant, but they were extrapolated to Zion. Major steps of the quantification of risk from a nuclear power plant are first outlined. Then, the methodologies of containment response analysis for severe accidents used for Zion are described in detail: major features of the containment event tree (CET) analysis codes and CET quantification procedures are summarized. In addition, plant specific features important to containment response analysis are presented along with the containment loading and performance issues included in the present uncertainty analysis. Finally, a brief summary of the results of deterministic and statistical containment event tree analysis is presented to provide a perspective on the large dry PWR containment response for postulated severe accidents.accidents.

  • PDF

Improvement and validation of aerosol models for natural deposition mechanism in reactor containment

  • Jishen Li ;Bin Zhang ;Pengcheng Gao ;Fan Miao ;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2628-2641
    • /
    • 2023
  • Nuclear safety is the lifeline for the development and application of nuclear energy. In severe accidents of pressurized water reactor (PWR), aerosols, as the main carrier of fission products, are suspended in the containment vessel, posing a potential threat of radioactive contamination caused by leakage into the environment. The gas-phase aerosols suspended in the containment will settle onto the wall or sump water through the natural deposition mechanism, thereby reducing atmospheric radioactivity. Aiming at the low accuracy of the aerosol model in the ISAA code, this paper improves the natural deposition model of aerosol in the containment. The aerosol dynamic shape factor was introduced to correct the natural deposition rate of non-spherical aerosols. Moreover, the gravity, Brownian diffusion, thermophoresis and diffusiophoresis deposition models were improved. In addition, ABCOVE, AHMED and LACE experiments were selected to validate and evaluate the improved ISAA code. According to the calculation results, the improved model can more accurately simulate the peak aerosol mass and respond to the influence of the containment pressure and temperature on the natural deposition rate of aerosols. At the same time, it can significantly improve the calculation accuracy of the residual mass of aerosols in the containment. The performance of improved ISAA can meet the requirements for analyzing the natural deposition behavior of aerosol in containment of advanced PWRs in severe accident. In the future, further optimization will be made to address the problems found in the current aerosol model.

3-D Model-based UAV Path Generation for Visual Inspection of the Dome-type Nuclear Containment Building (UAV를 이용한 돔형 원자력 격납건물 외관조사를 위한 3차원 모델기반 비행 좌표 생성 방법)

  • Kim, Bong-Geun
    • Journal of KIBIM
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • This paper provides a method for generating flight path of Unmanned Aerial Vehicle (UAV) that is intended to be used in visual inspection of dome-type nuclear containment building. The method basically employs 3-D model to extract accurate location coordinates. Two basic route patterns that provide guide lines in defining moving locations were defined for each side wall and dome section of the containment. The route patterns support sequential capturing of images as well. In addition, several simple equations and an algorithm for calculation of the moving location on the route were developed on the basis of 3-D geometric characteristics of the containment building. A prototype computer program has been implemented to validate the proposed method, and a case study shows the method can visualize covering area in 3-D model as well.

Realistic toch Containment Analysis Using A Merged Version of RELAP5/CONTEMPT4

  • Kwon, Young-Min;Lee, Ki-Young;Song, Jin-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.447-452
    • /
    • 1996
  • Realistic containment analyses for large LOCA using a merged torsion of RELAP5/CONTEMPT4 are conducted. Analyzed are Generic LOCA with respect to the mass and energy releases from the RCS and containment pressure and temperature behaviors. The break locations considered are the double-ended guillotine breaks at the RCP discharge and hot legs for UCN 3&4 plants. For discharge leg break. the predicted containment pressure and temperature reach a peak during blowdown phase, thereafter the pressure and temperature decrease gradually without the second reflood peak. For the hot leg break it is found that the bypass break flow through the broken steam generator-during post-blowdown is negligibly small so that the containment atmosphere is not pressurized after the end of blowdown.

  • PDF