• Title/Summary/Keyword: Container hold

Search Result 24, Processing Time 0.018 seconds

An Experimental Study Improving Ventilation of Container Ship Hold Using Horizontal Upward Jet Duct (수평 상향 분사 덕트를 이용한 컨테이너선 화물창 환기 개선에 대한 실험적 연구)

  • Park, Il-Seouk;Park, Sang-Min;Ha, Ji-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.236-245
    • /
    • 2006
  • The ventilation performance for the various venting duct arrays has been experimentally compared in the scaled model of the container hold. Most container ships have the ventilation duct system to remove effectively the condensing heat released from container refrigerator. The existing duct system is vertically installed and basically has the number of duct as many as the columns of reefer container stack. In this study, to make up for the weak points having stagnantly hot legions in the centered area of container hold for the present system, the horizontal upward jotting duct system was proposed and proved by temperature rising tests on the scaled model. In this paper, the expected flow regimes and the thermal and hydrodynamic analogies as well as the measured temperature distributions in a hold for various duct types and heat released rates are deeply discussed.

A Study on Thickness Optimization of Bottom Floor for Container Ship (컨테이너선 Bottom Floor 두께 최적화에 대한 연구)

  • Lee, A-Mi;Ryu, Yeong-Ung;Lee, Joon-Hyuk;You, Yeong-Gyu
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.95-100
    • /
    • 2011
  • In general, thickness of bottom floor in fore/aft cargo hold region for container ship has been determined based on FEM analysis result of mid cargo hold region. But this approach has room for improvement because section shape and frame spacing in fore/aft cargo hold of container ship are quietly different from those of mid cargo hold. From this study, correlation between FEM result and grillage analysis result has been investigated and simple method for thickness determination of bottom floor in fore/aft cargo hold using newly improved grillage analysis is proposed.

  • PDF

Review for C/H Bulkhead Stringer with Opening (6,500 TEU Container 선박의 Opening을 고려한 Cargo Hold Bulkhead Stringer 구조의 Strength 검토)

  • Ha, Ji-Hyung;Park, Dong-Kun;Kim, Bo-Eun;Jeon, Ji-Yoon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.52-58
    • /
    • 2009
  • Openings for access to cargo holds are cut on horizontal stringers in every bulkhead of container carriers. But, they are positioned at the edge of stringer width to make minimum space for access and these openings are required to be stiffened by owners and classifications respectively. In this paper, the cargo hold bulkhead stringers with openings for 6,500 TUE container carriers were reviewed by FE analysis to be conducted with the results of hold analysis for 6,500 TUE container carriers classed to GL, DNV, LR and BV respectively, and purpose of this paper is to establish yard's standard of the reinforcement for these openings.

  • PDF

A Study on Container Monitoring Loaded into the Hold in Maritime Logistics (해상운송 환경에서 IP-RFID 기술을 이용한 선박 홀드에 적재된 컨테이너 상태 모니터링에 관한 연구)

  • Kim, Tae-Hoon;Choi, Sung-Pill;Moon, Young-Sik;Lee, Byung-Ha;Jung, Jun-Woo;Park, Byung-Kwon;Kim, Jae-Joong;Choi, Hyung-Rim
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1446-1455
    • /
    • 2016
  • The recent increase of fresh farm products, hazardous cargos, and high-priced goods in marine transportation has caused an increased demand of cargo owners and shipping companies with regard to the monitoring of the location and state of cargo. To meet this increase, numerous technologies are being studied for the monitoring of the cargo state. Cargo containers on a ship are loaded on a ship's deck and in a ship's hold, which is located under the deck. However, Since the developed technologies mostly transfer the container status information that collected by mobile communication, it costs a lot to install communication infrastructure on ship. And the ship's hold is completely sealed with a cover, and communication with the reader positioned at the ship's bridge is difficult. Therefore, most existing studies on container monitoring on ships have focused on the monitoring of containers loaded on a ship's deck. Accordingly, this study suggested system configuration for the monitoring of containers in a ship's hold using IP-RFID technology. The suggested system configuration was tested on an actual ship under navigation, and the test results are given in this study. The test results verified that the monitoring of containers in a ship's hold using IP-RFID technology is effective.

Experimental analysis of ventilation performance varying with duct shapes inside reefer container hold (냉동 컨테이너 적재부의 배관 형상에 따른 환기성능 실험)

  • Park, Il-Seouk;Park, Sang-Min;Lee, Dong-Jo;Seol, Sin-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1710-1714
    • /
    • 2004
  • The analysis of ventilation performance varying with duct shapes in reefer container of scale-model has studied experimentally. Most container ships have ventilation system of which ducts extended to the bottom for the purpose of efficient exhausting of condensing heat from hold. However, the size of ducts is so over-long that it causes manufacturing troubles. In this study, for various types of duct, flow visualization using smoke and normalized temperature analysis are presented. Finally, the cooling performance are compared respectively.

  • PDF

A Study on the Prospect of Attracting Container Cargos for Import and Export into Gunsan Port (군산항 유치가능 수출입 컨테이너화물 추정 연구)

  • Park, Hyoung-Chang
    • Journal of Korea Port Economic Association
    • /
    • v.24 no.2
    • /
    • pp.71-90
    • /
    • 2008
  • Container cargos for import and export of Jeollabukdo are handled at Gunsan port, which just hold 6.60% of the total amount 264,120 TEU. The rest of them, reaching 94.40%, are handled at Gwangyang port(55.90%), Busan port(34.15%) and other(4.45%). Container cargos for import and export handled at Gunsan port are 31,715 TEU that hold only 0.20% of all cargos in Korea. On the other hand, container cargos for import and export handled at Shanghai and Qingdao port are 26,912 TEU which hold 80.15% of the total handling container cargos at Gunsan port. If 50% of container cargos produced in Jeollabukdo are handled at Gunsan port, the total handling container cargos will be 130,000 TEU. And if the container cargos reaching 1,947,069 TEU which are using other ports can be attracted to Gunsan port, it is expected that around 190,000 TEU will be increased in the quantity of goods. The total container cargos of Shanghai and Qingdao port not handled by the nearest ports are 383,184 TEU. If Jeollabukdo attract around 10% of those cargos into Gunsan port, about 38,000 TEU container cargos will be handled at Gunsan port.

  • PDF

Development of The High-Speed Container Handling System with On-Chassis Type (온-섀시 방식의 고속 컨테이너 하역시스템 개발)

  • Choi, Kook-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.323-332
    • /
    • 2020
  • Container ships are getting bigger due to the increase in global cargo volume. Therefore, it needs to increase the speed for loading and unloading of containers at the quayside. Traditionally, only one container is handled at once at the quayside due to it's heavy weight. In this paper, a method of handling multiple containers at once using chassis is proposed. Proposed system is consists of a container chassis that can hold three layer stacked containers, transport system that can handle the container chassis including rail-based or vehicle-based roll-on roll-off systems, and dedicated crane system. The conceptual design of crane and transport system that can handle three stacked containers is carried out and verified. The proposed system can be adopted for real quayside container handling system with high speed.

A Study on Determination of Optimal Prevention Maintenance Interval for Gantry Crane in Container Terminal (선박작업 생산성 향상을 위한 갠트리 크레인의 고장분석 및 예방보전 주기 결정에 관한 연구)

  • Kim Hwan-Seong;Kim Young-Ho;Tran Ngoc Hoang Son
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.339-344
    • /
    • 2006
  • The productivity for container hand1ing in container ship is a important role in container terminal, and it is mainly depended on the productivity of gantry crane. From the failure of gantry crane, the crane will be stopped until the repair of the failure. During the repair, the loading and/or discharging for container ship is suspended, and the productivities of the container ship and the yard is just hold. Thus, the prevention maintenance is importance to make a keep the steady state condition for all equipments in container terminal. In this paper, we deal with a optimal determination method of prevention maintenance interval for gantry crane systems. For verification, we will make a productivity of gantry crane and adapt to total container handling in each ship by simulation.

  • PDF

Investigation of torsion, warping and distortion of large container ships

  • Senjanovic, Ivo;Vladimir, Nikola;Tomic, Marko
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.73-93
    • /
    • 2011
  • Large deck openings of ultra large container ships reduce their torsional stiffness considerably and hydroelastic analysis for reliable structural design becomes an imperative. In the early design stage the beam model coupled with 3D hydrodynamic model is a rational choice. The modal superposition method is ordinary used for solving this complex problem. The advanced thin-walled girder theory, with shear influence on both bending and torsion, is applied for calculation of dry natural modes. It is shown that relatively short engine room structure of large container ships behaves as the open hold structure with increased torsional stiffness due to deck effect. Warping discontinuity at the joint of the closed and open segments is compensated by induced distortion. The effective torsional stiffness parameters based on an energy balance approach are determined. Estimation of distortion of transverse bulkheads, as a result of torsion and warping, is given. The procedure is illustrated in the case of a ship-like pontoon and checked by 3D FEM analysis. The obtained results encourage incorporation of the modified beam model of the short engine room structure in general beam model of ship hull for the need of hydroelastic analysis, where only the first few natural modes are of interest.

A Study on the Safe Transportation of a Non-Standardized Cargo (Steel Box) for General Cargo Ships (일반화물선에서 비표준화물(철재상자)의 안전한 운송을 위한 고찰)

  • Kim, Ji-Hong
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.444-449
    • /
    • 2019
  • The "Standard on Cargo Stowage and Securing" implemented to safely stow and secure the cargo of international shipping vessels and domestic car ferries, has also been applied to general cargo ships transported between domestic ports since J anuary 2018. As a result, a new type of cargo, such as a non-standardized steel box transported by general cargo ships to major ports in Korea from Jeju Island in Korea, must be factored as the method of safe stowage and securing according to the legal classification of cargo. This study analyzed the legal status of a steel box by analyzing the actual size, shape of steel box through field verification, collection of data from relevant agencies and finally proposed the methods of safe stowage and securing for a steel box in the cargo holds of general cargo ships. According to the relevant domestic laws and international regulations, steel boxes could be classified as pallette boxes with protective outer packing, a type of non-standardized cargo. Additionally, when a steel box is loaded into the cargo hold of general cargo ships, a method of loading and transporting them must be factored so that there is no gap in the cargo hold of ships. Verification of the safety of the tightly loading and transportation measures in the reviewed cargo hold was verified through safety of the hull structure and securing of the ship's stability. As a result of verification of the safety of the hull structure, the value of the structural strength on both sides and the floor of the cargo hold for the total weight of cargo that can be loaded in the cargo hold was satisfied, and the value of the ship's stability was satisfied with the value of GoM and the restoration of the three cross-sectional stability curve areas.