• Title/Summary/Keyword: Container design

Search Result 806, Processing Time 0.034 seconds

Development of a Computer Program for Bulk-type Container Design using Optimum Design Parameter Analysis (산물형 포장상자의 최적설계 요인분석에 의한 설계 프로그램 개발)

  • 박종민
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.315-324
    • /
    • 2003
  • If an optimum design technique is applied in the design of packaging container for bulk-type products, merits on the side of not only economic and compression performance but distribution efficiency are expected. Accordingly, minimum board area (mRBA), compression strength (CS) and compression strength per unit area (mCSPA) are important design parameters in optimum design of packaging container for bulk-type products. In this study, mathematical models for mRBA, CS and mCSPA of container as algorithm for optimum design program were developed. In order to develop these models, compression test by various dimensions of container and response surface analysis for mRBA, CS, and mCSPA of container were carried out. In the developed models, volume, W/L ratio and depth of container were principal independent variables. On the found of these models, optimum design program having faculties of outward and inward optimum design and information design was developed. Though the packaging specifications are same, required board area, board combination and cost of the corrugated board required container manufacture were greatly different by boundary conditions in outward design. Moreover, about 6.3∼10.1% in weight of container was lighter, and about 13.2∼25.6% in cost of container was reduced when the program was applied for 2 kinds of bulk-type products.

A Study on the Eco-friendly Kitchen Detergent Container Design (조선조 경상의 다리형태를 적용한 친환경 주방세제 용기디자인 연구)

  • Kim, Chung Ho
    • Journal of the Korea Furniture Society
    • /
    • v.25 no.4
    • /
    • pp.353-363
    • /
    • 2014
  • Design of the container was designed to be able to have a sense of security by emphasizing the points and easy to use sophisticated in order to match the image of the company in an environmentally friendly form of the whole. The design of the natural detergent container, because the container itself is to prevent related bar closely with water, a slip, with an emphasis on the form of fish swim, looks the handle of the oval for the harmony of the entire container I was used to the point. The image extraction in the ordinary, you can design by applying the curve of streamlined feet of thin in order to emphasize the image of honest companies, oval fuselage top, easily without slipping and harmony of the image of the entire container in view of the functional aspects can grab to, which is designed to enter the interior. The design of the natural environment detergent container industry, it was incorporated as much as possible to the vessel and corporate image and sense of stability and the proportion of the overall shape, the basic concepts, the form on the productivity and functionality in the field of design, through the change and simplicity, with an emphasis on merchantability.

  • PDF

Optimum Design of Packaging Container for Bulk Materials(I)-Algorithm Development (벌크화물용 포장용기의 최적 설계(I)-알고리즘 개발)

  • Park, Jong-Min;Kwon, Soon-Goo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • In optimum design of packaging container for bulk materials, minimum board area, compression performance and distribution efficiency must be considered. In this study, mathematical models for minimum board area (RMA), compression strength (CS) and maximum compression strength per unit board area (MCSA) of container as algorithm for optimum design of packaging conatiner for bulk materials were developed as follows : RMA=f(V,D), ${\alpha}_{RMA}=f(V,D)$, MCSA=f(V,D), and ${\alpha}_{MCSA}=f(V,D)$. In order to develop these models, compression test according to various dimensions of container and response surface analysis for minimum board area, compression strength, and maximum compression strength per unit board area of container were carried out. In developed models, volume and depth of container were principal independent variables. Through the verified results for these models, optimum design of packaging container on the design conditions and limit conditions was possible. These models might be used in developing optimum design software of packaging container for bulk materials.

  • PDF

Conceptual design of ultra-high performance fiber reinforced concrete nuclear waste container

  • Othman, H.;Sabrah, T.;Marzouk, H.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.588-599
    • /
    • 2019
  • This research presents a structural design of high-level waste (HLW) container using ultra-high performance fiber reinforced concrete (UHP-FRC) material. The proposed design aims to overcome the drawbacks of the existing concrete containers which are heavy, difficult to fabricate, and expensive. In this study, the dry storage container (DSC) that commonly used at Canadian Nuclear facilities is selected to present the proposed design. The design has been performed such that the new UHP-FRC alternative has a structural stiffness equivalent to the existing steel-concrete-steel container under various loading scenarios. Size optimization technique is used with the aim of maximizing stiffness, and minimizing the cost while satisfying both the design stresses and construction requirements. Then, the integrity of the new design has been evaluated against accidental drop-impact events based on realistic drop scenarios. The optimization results showed: the stiffness of the UHP-FRC container (300 mm wall thick) is being in the range of 1.35-1.75 times the stiffness of existing DSC (550 mm wall thick). The use of UHP-FRC leads to decrease the container weight by more than 60%. The UHP-FRC container showed a significant enhancement in performance in comparison to the existing DSC design under considered accidental drop impact scenarios.

Optimum Design of Packaging Container for Bulk Materials(II)-Computer Program Development (벌크화물용 포장용기의 최적 설계(II)-프로그램 개발)

  • Park, Jong-Min;Kwon, Soon-Hong;Chung, Sung-Won
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 2000
  • If optimum design technique is applied in the design of packaging container for bulk materials, merits on the side of not only economic and compression performance but distribution efficiency are expected. In this study, on the ground of the optimum models for required board area and compression strength performance, optimum design program having faculties of outward and inward optimum design and information design was developed. This program was composed of input module, output module, database and management module, and calculation module. Though the packaging specifications ars same, requied board area, board composition and cost of container were greatly different according to exterior packaging conditions. Also, about 12% in weight of container was lighter, and about $13{\sim}17%$ in cost of container was reduced when the program was applied for 2 kinds of bulk materials.

  • PDF

A Case Study on the Planning Characteristic and It's Application of Container Architecture in Europe (유럽 컨테이너 건축물의 사례분석을 통한 국내 적용방안)

  • Kim, Mi-Kyoung;Mun, Young-A;Han, Su-Ji
    • Journal of the Korean housing association
    • /
    • v.26 no.1
    • /
    • pp.43-51
    • /
    • 2015
  • The purpose of this study was to analyze the planning characteristics and it's application of container architecture as case study. Field survey was used to analyze the spatial planning characteristics in terms of development outline, appearance, exterior, floor plan and interior of eight famous cases in Berlin, Hamburg, Hannover, Amsterdam and Paris of Europe. The results of this study were as follows; Firstly, good examples of container architectures such as student housing, social service center, temporary medical facility and cruise terminal in Europe suggested the potential of domestic applicability in various purposes and development. Secondly, various types of freight container, building container and module frame system should be developed with their reprocessing environment. Thirdly, it is necessary for us to develop ISO type(20~40ft) container and standard plan with interior and storage design reflecting demands of residents. Finally, the use of container module will be an environmental-friendly alternative for its modularity and reusability, so it should be used as it is without severe deformation. The development of environmental friendly energy sources such as hydro and solar power is necessary for domestic container architecture as well. The container design should include the use of high quality of exterior finishing materials and the plan of aesthetical color planning to make the building a local landmark.

A Study on Analysis and Design Method for Resource Management Information System in Container Terminal (컨테이너 터미널의 자원관리를 위한 정보시스템의 분석 및 설계에 관한 연구)

  • 김헌종;송재성;서만승
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2000.11a
    • /
    • pp.12-15
    • /
    • 2000
  • An SADT-based methodology is presented for systematically analyzing the container working process in container terminal, as well as an object-oriented design method for an integrated information system for container terminal resource planning and management. Our design architecture is composed of four levels, activity interface, activity PDCA control, human resource management, and facility resource management. Especially, the consideration of the human resource management level makes it possible to support cooperative tasks, to make the authority and responsibility on a task clear, and to extremely promote the balance between human and facility resources. Finally, The system architecture is suggested for Virtual Container Terminal, in which a planned container working process is simulated for previous feasibility check, work orders are transferred to control real devices, and to manage the entire process and related data.

  • PDF

Design for Container Terminal Simulator Using an Object-oriented Approach (객체지향접근법을 사용한 컨테이너 터미널 시뮬레이터의 설계)

  • Yun, Won-Young;Choi, Yong-Suk;Lee, Myung-Gil;Song, Jin-young
    • IE interfaces
    • /
    • v.13 no.4
    • /
    • pp.608-618
    • /
    • 2000
  • This paper proposes a design procedure to develop the object-oriented simulator of port container terminal. The design methodology uses an object-oriented approach to support an object-oriented simulation and the design procedure consists of object scheme and event scheme. The object-scheme is a procedure to determine the structure of material flow objects and information flow objects and a relation diagram between objects that have attributes and methods. The event scheme is a procedure to define methods and to connect messages of objects. We assume that the container terminal system consists of gate, container yard, and berth and the equipment used in the container terminal are container cranes, transfer cranes, yard tractors, and trailers.

  • PDF

Study on Thermal Insulation Design and Heat Flow Analysis of Spacecraft Shipping Container (위성 운송용 컨테이너의 단열 설계와 열 유동 해석에 관한 연구)

  • Park, Sang-Rae;Lee, Choon-Woo;Kim, Jin-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • In this paper, we propose a container wall and its boundary layer insulation design method that can maintain the temperature inside the spacecraft shipping container constantly under the condition that the heat or the external temperature changes severely to safely transport the satellite to the launch site. We will examine if the temperature inside the satellite shipping container is kept constant through the heat flow analysis and the satellite heat transfer analysis for the external environment of the satellite shipping container. Through the flow analysis inside the container, the flow distribution around the satellite in the container is analyzed, and the auxiliary fan, air conditioning system and special grill guide structure design for improving and optimizing heat flow performance are proposed.