• Title/Summary/Keyword: Container Yard

Search Result 321, Processing Time 0.029 seconds

A study on operation method of handling equipments in automated container terminals (자동화 컨테이너터미널에서 운송 장비의 운영방안에 관한 연구)

  • 이상완;최형림;박남규;박병주;권해경;유동호
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.11a
    • /
    • pp.296-303
    • /
    • 2002
  • The main subject to become a hub port is automation. The automated container terminal has already operated in advanced ports and it has been planned for the basic planning and operation design in domestic case. The key of automated container terminal is effective operation of both ATC(automated transfer crane) and AGV(automated guided vehicle) which is automated handling equipments. This is essential to productivity of automated container terminal. This study suggests the most optimal method of equipment operation in order to minimize loading time using each three types or effective ATC operation methods and AGV dispatching rules in automated container terminals. As the automated equipment operation causes unexpected deadlocks or interferences, it should be proceeded on event-based real time. Therefore we propose the most effective ATC operation methods and AGV dispatching rules in this paper. The various states occurred in real automated container terminals are simulated to evaluate these methods. This experiment will show the most robust automated equipment operation method on various parameters(the degree of yard re-marshaling, the number of containers and the number of AGVs)

  • PDF

Performance evaluation of double stack vehicle at container terminal (2단 적재차량의 컨테이너 이송능력 분석)

  • Ha Tae-Young;Choi Yong-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.255-261
    • /
    • 2005
  • The purpose of this paper is to analyze transport ability of Automated Guided Vehicle(AGV) and Double Stack Vehicle(DSV) at Automated Container Terminal(ACT). Usually, the main difference of AGV and DSV is capacity of container that they can transport between apron and yard block at once. AGV can carry out two 20 feet or one 40 feet maritime containers, but DSV can carry out four 20 feet or two 40 feet maritime containers. Therefore, DSV may improve more efficiency of stevedoring system of container terminal. In this paper, a simulation model using a graphics simulation system is developed to compare the proposed DSV with the current AGV at automated container terminal. The paper includes examples, performance tests and a discussion of simulation results.

  • PDF

A Study on Simulation of Remarshalling Work in an Automated Container Terminal (자동화 컨테이너터미널의 이적작업에 관한 시뮬레이션 연구)

  • Lee Joo-Ho;Choi Yong-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.203-208
    • /
    • 2004
  • The objective of this study is to analyze the efficiency of marshalling work using ATC(automated transfer crane) for ACT(automated container terminal). It is important fact to assignment of containers, because the character of ACT which block layout is vertical for berth and there are four other works which are inbound, oubound, loading and unloading in one block. And then there is need which assignment of containers with remarshaling work using ATCs in one block. Therefore, we analyze the efficiency of remarshaling work using simulation and suggest the assignment methodology of containers in yard

  • PDF

Simulation Methodology for Automation of Port Systems : Example of Container Terminal (항만 시스템의 자동화를 위한 시뮬레이션 방법론 : 컨테이너 터미널의 예)

  • Lee, Jang-Se
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.154-162
    • /
    • 2010
  • A simulation technique is very useful method to analyze the performance on various engineering area. To automate port systems, we have need of simulation to analyze an effect of assigning and operating devices. Thus we propose simulation methodology to be applied to an analysis, evaluation, planning for port automation. To do this, we have adopted the discrete event system specification based system entity structure / model base framework for modeling and simulation environment. We have performed modeling and simulation on entities of port systems such as container crane, yard tractor, transfer crane, etc. The proposed methodology has an advantage being able to effectively simulate on alternatives of composition and operation strategy for port systems. Some case studies will show the validity of proposed simulation methodology.

On Improving the Productivity of Busan Container Terminal (부산 컨테이너 부두의 효율적인 운영방안에 관하여)

  • 이병국;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.11 no.1
    • /
    • pp.39-65
    • /
    • 1987
  • Since the middle of 1950's, containerization has been rapidly spread over the world in virtue of great merits providing to interensts, and the fundamental changes in port management and prot operations are resulted. As the container terminal is a complex system which is consisted of various subsystems, the treatment for improving the productivity is required in a comprehensive fashion, both in each of its parts and as an integrated system. This paper aims to make an intensive analysis of the Busan Container Terminal system, especially focusing on its subsystems such as ship operation system, storage system and transfer system. First of all, the intrinsic capacity of various subsystems is calculated and it is checked whether the current operation is being performed effectively through the formal analysis. Secondly, the suggestion is presented to improve the operation by considering the throughput that the port of Busan will have to accept in the near future. The results are as follows; 1) As the inefficiency is due to the imbalance between various subsystems at Busan terminal, transfer equipment level must be up to 31% for straddle carrier and 67% transfer crane above all. 2) The yard capacity must be increased by reducing the free dwell time of containers in order to accept the traffic volume smoothly in the near future. 3) The better way to reduce the port congestion is to change berthing rule from the FIFP to the Pre-allocated system by considering the ship arrival pattern.

  • PDF

Emissions of Ozone Precursors from a Biogenic Source and Port-related Sources in the Largest Port City of Busan, Korea

  • Shon, Zang-Ho
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.39-47
    • /
    • 2015
  • The emissions of ozone precursors, NOx and VOCs from a biogenic source and port-related sources (ship, shipping container truck, and cargo handling equipment) were estimated in Busan during 2013. Total biogenic isoprene emission in Busan during 2013 was estimated to be $4,434ton\;yr^{-1}$ with the highest emission (e.g., $28ton\;day^{-1}$) in summer using a BEIS method. Seasonal ozone production rates by isoprene ranged from 0.15 (winter) to 2.08 (summer) $ppb\;hr^{-1}$, contributing the predominant portion to ambient ozone levels. Total emissions of NOx and VOCs from ship traversing Busan ports were estimated to be 29,537 and $814ton\;yr^{-1}$, respectively, showing the significant contribution to total NOx emission in Busan. The emissions of ozone precursors were significantly different depending on ship tonnage and port location. Compared to the ship emission, the emissions of NOx and VOCs from the shipping container trucks in Busan were insignificant (2.9% for NOx and 3.9% for VOCs). Total NOx and VOCs emissions from the cargo handling equipment were estimated to be 1,440 and $133ton\;yr^{-1}$, respectively with the predominance of yard tractors.

Stack Bin Packing Algorithm for Containers Pre-Marshalling Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.10
    • /
    • pp.61-68
    • /
    • 2015
  • This paper deals with the pre-marshalling problem that the containers of container yard at container terminal are relocated in consensus sequence of loading schedule of container vessel. This problem is essential to improvement of competitive power of terminal. This problem has to relocate the all of containers in a bay with minimum number of movement. There are various algorithms such as metaheuristic as genetic algorithm and heuristic algorithm in order to find the solution of this problem. Nevertheless, there is no unique general algorithm that is suitable for various many data. And the main drawback of metaheuristic methods are not the solution finding rule but can be find the approximated solution with many random trials and by coincidence. This paper can be obtain the solution with O(m) time complexity that this problem deals with bin packing problem for m stack bins with descending order of take out ranking. For various experimental data, the proposed algorithm can be obtain the optimal solutions for all of data. And to conclude, this algorithm can be show that most simple and general algorithm with simple optimal solution finding rule.

Flow Path Design for Automated Transport Systems in Container Terminals Considering Traffic Congestion

  • Singgih, Ivan Kristianto;Hong, Soondo;Kim, Kap Hwan
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.1
    • /
    • pp.19-31
    • /
    • 2016
  • A design method of the network for automated transporters mounted on rails is addressed for automated container terminals. In the network design, the flow directions of some path segments as well as routes of transporters for each flow requirement must be determined, while the total transportation and waiting times are minimized. This study considers, for the design of the network, the waiting times of the transporters during the travel on path segments, intersections, transfer points below the quay crane (QC), and transfer points at the storage yard. An algorithm, which is the combination of a modified Dijkstra's algorithm for finding the shortest time path and a queuing theory for calculating the waiting times during the travel, is proposed. The proposed algorithm can solve the problem in a short time, which can be used in practice. Numerical experiments showed that the proposed algorithm gives solutions better than several simple rules. It was also shown that the proposed algorithm provides satisfactory solutions in a reasonable time with only average 7.22% gap in its travel time from those by a genetic algorithm which needs too long computational time. The performance of the algorithm is tested and analyzed for various parameters.

Effect Analysis according to the Reduction of Traffic when General Pier and Jasungdae Pier are Re-developed - Focused on the Social Cost Analysis - (일반부두와 자성대부두의 재개발에 따른 통행량감소 효과분석 - 사회적 비용 분석을 중심으로 -)

  • Song, Yong-Seok;Kang, Dal-Won;Nam, Ki-Chan;Hur, Yun-Su
    • Journal of Navigation and Port Research
    • /
    • v.30 no.10 s.116
    • /
    • pp.819-823
    • /
    • 2006
  • Since the north port in Busan started to operate in general pier (1, 2, central, 3 and 4), the business area had been expanded to Jasungdae, Shinsundae, Gamman zone and so on However, these zones adjoin the Busan city and have caused problems to both logistics and city activities. The operation of Off-Dock Container Yard (ODCY) is a representative example due to the limited sphere of Container Yard in this city. It increases logistics costs and causes serious social problems as a result of increasing traffic in the trunk roads such as Uam and Chungjang roads. This paper aims to analyze the effects of the reduction in traffic of trunk roads in Chungjan, Uam roads and so on, when General Pier and Jasungdae Pier are Re-developed. The effects of the reduction in social cost from traffic congestion are also analyzed. Finally, we predict and evaluate the effects according to the re-development of two piers, north pier and Jasungdae pier.

Effect Analysis according to the Reduction of Traffic when General Pier and Jasungdae Pier are Re-developed -Focused on the Social Cost Analysis- (일반부두 및 자성대부두 재개발시 통행량 감소에 따른 효과 분석 -사회적 비용분석을 중심으로-)

  • Song, Yong-Seok;Kang, Dal-Won;Nam, Ki-Chan;Hur, Yun-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.275-279
    • /
    • 2006
  • Since the North port in Busan started to operate in general pier (1, 2, central, 3 and 4), the business area had been expanded to Jasungdae, Shinsundae, Gamman zone and so on. However, these zones adjoin the Busan city and have caused problems to both logistics and city activities. The operation of Off-Dock Container Yard (ODCY) is a good representative example due to the limited sphere of Container Yard in this city. It increases logistics costs and causes serious social problems as a result of increasing traffic in the truck roads such as Uam and Chungjang roads. This paper aims to analyze the effects of the reduction in traffic of trunk roads in Chungjan, Uam roads and so on, when General Pier and Jasungdae Pier are Re-developed. The effects of the reduction in social cost from traffic congestion are also analyzed. Finally, we predict and evaluate the effects according to the re-development of two piers, north pier and Jasungdae pier.

  • PDF