• Title/Summary/Keyword: Container Transfer System

Search Result 132, Processing Time 0.026 seconds

Development of Operation Strategy to improve Efficiency for Twin Automated Transfer Crane in an Automated Container Terminal

  • Park, Byung-Joo;Choi, Hyung-Rim
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.605-611
    • /
    • 2007
  • In order to become a mega hub port, major ports all over the world are making every effort to enhance their productivity through efficiency of internal operation. Accordingly, in order to enhance the competitiveness of a container terminal, an automated container terminal is considered as the best alternative. An automated container terminal is using such automated handling equipment as AGV(Automated Guided Vehicles) and ATC(Automated Transfer Crane). The efficient equipment operation plays a critical role in enhancing the productivity of an automated container terminal. In an automated container terminal, the most important equipments are AGV and ATC. Each block of containers with a vertical layout is generally operating two ATCs. The two ATCs can be crossed or not at each block. In the case of operating crossover ATC, it has an advantage of high flexibility that ATC work is possible at both TP(Transfer Point) of each block. But it has also a disadvantage that the yard has to be operated at a low storage level of containers in the terminal yard. Recently, for automated container terminals, which are being prepared for opening in Korea, they plan to use uncrossed twin ATC in order to make the storage level of their yards high at a low cost. Therefore, studies have to be made in order to increase the efficiency of twin ATC system based on the flexibility that the crossover ATC system has. This research aims to suggest an operation strategy to improve efficiency of twin ATC at each storage block in a yard.

On Improving the Productivity of Busan Container Terminal (부산 컨테이너 부두의 효율적인 운영방안에 관하여)

  • 이병국;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.11 no.1
    • /
    • pp.39-65
    • /
    • 1987
  • Since the middle of 1950's, containerization has been rapidly spread over the world in virtue of great merits providing to interensts, and the fundamental changes in port management and prot operations are resulted. As the container terminal is a complex system which is consisted of various subsystems, the treatment for improving the productivity is required in a comprehensive fashion, both in each of its parts and as an integrated system. This paper aims to make an intensive analysis of the Busan Container Terminal system, especially focusing on its subsystems such as ship operation system, storage system and transfer system. First of all, the intrinsic capacity of various subsystems is calculated and it is checked whether the current operation is being performed effectively through the formal analysis. Secondly, the suggestion is presented to improve the operation by considering the throughput that the port of Busan will have to accept in the near future. The results are as follows; 1) As the inefficiency is due to the imbalance between various subsystems at Busan terminal, transfer equipment level must be up to 31% for straddle carrier and 67% transfer crane above all. 2) The yard capacity must be increased by reducing the free dwell time of containers in order to accept the traffic volume smoothly in the near future. 3) The better way to reduce the port congestion is to change berthing rule from the FIFP to the Pre-allocated system by considering the ship arrival pattern.

  • PDF

On the Cost Analysis of Container Physical Distribution System in Pusan Port (부산항 컨테이너 물류 시스템의 비용분석에 관하여)

  • 박창호;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.3
    • /
    • pp.13-24
    • /
    • 1991
  • This paper aims to determining the optimal capacity of Pusan port in view point of Container Physical Distribution cost. It has been established a coast model of the container physical distribution system in Pusan port is composed of 4 sub-systems and in-land transport system. Cargo handling system, transfer & storage system and in-land transport system, and analyzed the cost model of the system. From this analysis, we found that the system had 7 routes including in-land transport by rail or road and coastal transport by feeder ship between Pusan port and cargo owner's door. Though railway transport cost was relatively cheap, but, it was limited to choose railway transport routes due to the introducing of transport cargo allocation practice caused by shortage of railway transport capacity. The physical distribution ost for total import & export container through Pusan port was composed of 4.47% in port entring cost, 12.98% in cargo handling cost, 7.44% in transfer & storage cost and 75.11% in in-land transport cost. Investigation in case of BCTOC verified the results as follows. 1) The optimal level of one time cargo handling was verified 236VAN (377TEU) and annual optimal handling capacity was calculated in 516, 840VAN(826, 944TEU) where berth occupancy is $\rho$=0.6 when regardless of port congestion cost, 2) The optimal level of one time cargo handling was verified 252VAN (403TEU) and annual optimal handling capacity was calculated in 502, 110VAN (803, 376TEU) where berth occupancy is $\rho$=0.58 when considering of port congestion cost.

  • PDF

Continuous Migration Container System for Upgrading Object

  • Yoosanthiah, N.;Khunkitti, A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.960-964
    • /
    • 2004
  • During system resource improvement process that based on Object-Oriented technology could be affect to the continuous system performance if lack appropriate management and control objects mechanism. This paper proposes a methodology to support continuous system performance and its stability. The adoption is based on Java Container Framework and Collections Framework for object collection. Also includes Software Engineering, Object Migration and Multiple Class Loaders mechanism accommodate to construct Continuous Migration Container (CMC). CMC is a runtime environment provides interfaces for management and control to support upgrading object process. Upgrade object methodology of CMC can be divided into two phase are object equivalence checking and object migration process. Object equivalence checking include object behavior verification and functional conformance verification before object migration process. In addition, CMC use Multiple Class Loaders mechanism to support reload effected classes instead of state transfer in migration process while upgrading object. These operations are crucial for system stability and enhancement efficiency.

  • PDF

A Study on the Application of Transfer Equipment Pooling Systems for Enhancing Productivity at Container Terminals (컨테이너터미널에서 생산성 향상을 위한 이송장비 풀링시스템 적용방안에 관한 연구)

  • Cha, Sang-Hyun;Noh, Chang-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.399-407
    • /
    • 2014
  • Due to the increase of container terminals, as the volume of terminals become distributed, the competition of preserving existing volume and inviting new volume are becoming fierce, and various ways for processing terminal volume and inviting volume are being sought. Container terminal efforts to maximize efficiency in order to improve the volume handling capability and productivity by both expansion of the latest equipment and development of the latest terminal system. There are a variety of factors that influence the improvement of productivity at container terminals. Among them, in the case of yard transfer equipment, if it were to convert from the method of a Yard Tractor(YT) being fixed allocated to a certain Gantry Cranes(GC) to a Pooling System that processes in a method that properly distributes and allocates a Yard Tractor(YT) to multiple Gantry Cranes(GC), the terminal productivity and the fusibility of YT may be increased. The KPI which is an indicator for the productivity at container terminals is GC productivity and since GC productivity cannot exceed the speed of physical GC operations, a Pooling System is applied to increase productivity which its meaning and effect is massive. Here in the Report, we produce the Pooling Algorithm system to improve the efficiency of the transported equipments in container terminal which is actually applying for this method and have compared Non pooling system with Pooling system in the fields. By introducing a transfer equipment pooling system and enhancing the productivity compared to other terminals, it may become an essential factor for increasing the continuous service quality and profitability in terms of terminal business.

A Study on Development ATCS of Transfer Crane using Neural Network Predictive Control (신경회로망 예측제어에 의한 Transfer Crane의 ATCS 개발에 관한 연구)

  • 손동섭;이진우;이영진;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.113-119
    • /
    • 2002
  • Recently, an automatic crane control system is required with high speed and rapid transportation. During the operation of crane system in container yard it is necessary to control the crane trolley position and loop length so that the swing of the hanging container is minimized We can do development of unmanned automation control system using automation travel control technique and anti-sway technique in crane system. Therefore, we designed a controller for Automation travel control to control the transfer crane system. Analyzed crane system through simulation, and proved excellency of control performance than other conventional controllers.

  • PDF

Study on Thermal Insulation Design and Heat Flow Analysis of Spacecraft Shipping Container (위성 운송용 컨테이너의 단열 설계와 열 유동 해석에 관한 연구)

  • Park, Sang-Rae;Lee, Choon-Woo;Kim, Jin-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • In this paper, we propose a container wall and its boundary layer insulation design method that can maintain the temperature inside the spacecraft shipping container constantly under the condition that the heat or the external temperature changes severely to safely transport the satellite to the launch site. We will examine if the temperature inside the satellite shipping container is kept constant through the heat flow analysis and the satellite heat transfer analysis for the external environment of the satellite shipping container. Through the flow analysis inside the container, the flow distribution around the satellite in the container is analyzed, and the auxiliary fan, air conditioning system and special grill guide structure design for improving and optimizing heat flow performance are proposed.

An Intelligent Multi-agent System for Efficient Gate Operation in a Container Terminal

  • Yoo, Dong-Ho;Choi, Hyung-Rim;Park, Byung-Joo;Kang, Moo-Hong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.371-376
    • /
    • 2006
  • Recently the container volume in the global trade is steadily increasing. In an effort to cope with this trend, major ports of the world are stepping up the introduction of high-tech equipments, trying to establish a highly efficient information system, and improving the internal work processes of their container terminals. For speedy and effective cargo handling, they are making every effort in the diverse fields. The purpose of this study aims at developing an intelligent multi-agent system for the gate work of a container terminal, which is the place of authority transfer in a container terminal. The agent system suggested in this study has made a comparison between COPINO information by TOS (Terminal Operating System) and information on containers and trucks recognized at the gate passage, checking up their efficiency, and performing the function of controlling outside truck's input-output. Also, based on the records of outside truck's gate passage, some gates can be operated flexibly, consequently enhancing the efficiency of the gate function. The results of job performance will immediately be notified to the customers and terminal managers, thus helping them make decisions speedily.

  • PDF

Optimum Design for the Frame of the Shuttle Car for LMTT to transfer a Container (컨테이너 이송을 위한 LMTT용 셔틀 카의 프레임 치수최적설계)

  • Han, Dong-Seop;Han, Geun-Jo;Lee, Kwon-Hee;Shim, Jae-Joon;Lee, Seong-Wook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.429-432
    • /
    • 2005
  • LMTT(Linear Motor based Transfer Technology) is a new type of transfer system used in the maritime container terminal for the port automation, and largely consists of a controller, shuttle car, and rail. The shuttle car is divided into the frame part, the driving part, and wheels. In order to design this system, various researched on each part of it must be conducted. In this study, we dealt with the optimum design for the frame part of the shuttle car designed from previous studies on the strength of the frame with respect to the number of cross beams to minimize the weight of the shuttle car and to satisfy design criteria of cargo-handling systems in container terminal. For the optimization of the frame, thicknesses of each beam were adopted as design variables, the weight of the frame as objective function, and stress and deflection per unit length as constraint conditions.

  • PDF