• 제목/요약/키워드: Container Identifier Recognition

검색결과 22건 처리시간 0.023초

GATE 자동화를 위한 컨테이너 식별자 인식 시스템 (Container Identifier Recognition System for GATE automation)

  • 유영달;하성욱;강대성
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1998년도 추계학술대회논문집:21세기에 대비한 지능형 통합항만관리
    • /
    • pp.137-141
    • /
    • 1998
  • Todays the efficient management of container has not been realized in container terminal, because of the excessive quantity of container transported and manual system. For the efficient and automated management of container in terminal, the automated container identifier recognition system in terminal is a significant problem. However, the identifier recognition rate is decreased owing to the difficulty of image preprocessing caused the refraction of container surface, the change of weather and the damaged identifier characters. Therefore, this paper proposes more accurate system for container identifier recognition as suggestion of Line-Scan Proper Region Detect for stronger preprocessing against external noisy element and Moment Back-Propagation Neural Network to recognize identifier.

  • PDF

게이트 자동화를 위한 컨테이너 식별자 인식 시스템 (Container Identifier Recognition System for GATE Automation)

  • 유영달;강대성
    • 한국항만학회지
    • /
    • 제12권2호
    • /
    • pp.225-232
    • /
    • 1998
  • Todays, the efficient management of container has not been realized in container terminal, because of the excessive quantity of container transported and manual system. For the efficient and automated management of container in terminal, the automated container identifier recognition system in terminal is a significant problem. However, the identifier recognition rate is decreased owing to the difficulty of image preprocessing caused the refraction of container surface, the change of weather and the damaged identifier characters. Therefore, this paper proposes more accurate system for container identifier recognition as suggestion of LSPRD(Line-Scan Proper Region Detection) for stronger preprocessing against external noisy element and MBP(Momentum Back-Propagation) neural network to recognize the identifier.

  • PDF

영상처리에 기반한 게이트 운영시스템 개발 (Development of Gate Operation System Based on Image Processing)

  • 강대성;유영달
    • 한국항만학회지
    • /
    • 제13권2호
    • /
    • pp.303-312
    • /
    • 1999
  • The automated gate operating system is developed in this paper that controls the information of container at gate in the ACT. This system can be divided into three parts and consists of container identifier recognition car plate recognition container deformation perception. We linked each system and organized efficient gate operating system. To recognize container identifier the preprocess using LSPRD(Line Scan Proper Region Detection)is performed and the identifier is recognized by using neural network MBP When car plate is recognized only car image is extracted by using color information of car and hough transform. In the port of container deformation perception firstly background is removed by using moving window. Secondly edge is detected from the image removed characters on the surface of container deformation perception firstly background is removed by using moving window. Secondly edge is detected from the image removed characters on the surface of container. Thirdly edge is fitted into line segment so that container deformation is perceived. As a results of the experiment with this algorithm superior rate of identifier recognition is shown and the car plate recognition system and container deformation perception that are applied in real-time are developed.

  • PDF

컬러 정보와 윤곽선 추적을 이용한 컨테이너 식별자 인식 (Recognition of Container Identifier using Color Information and Contour Following)

  • 김병기
    • 한국산업정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.40-46
    • /
    • 2006
  • 영상처리 기술을 이용한 컨테이너 식별자 자동인식은 항만자동화와 물류 처리율 향상에 매우 중요한 요소이다. 본 논문에서는 칼라정보를 이용한 윤곽선 추출과 추출된 문자영역에 대한 문자 조건 검증 알고리즘을 사용하여 입력 영상의 다양한 밝기변화와 잡음에 강한 컨테이너 식별자 인식 기법을 제안하였다. 360장의 컨테이너 영상을 대상으로 실험한 결과 제안한 방법이 식별자 인식에 유용함을 확인하였다.

  • PDF

Recognition of Container Identifiers Using 8-directional Contour Tracking Method and Refined RBF Network

  • Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • 제6권1호
    • /
    • pp.100-104
    • /
    • 2008
  • Generally, it is difficult to find constant patterns on identifiers in a container image, since the identifiers are not normalized in color, size, and position, etc. and their shapes are damaged by external environmental factors. This paper distinguishes identifier areas from background noises and removes noises by using an ART2-based quantization method and general morphological information on the identifiers such as color, size, ratio of height to width, and a distance from other identifiers. Individual identifier is extracted by applying the 8-directional contour tracking method to each identifier area. This paper proposes a refined ART2-based RBF network and applies it to the recognition of identifiers. Through experiments with 300 container images, the proposed algorithm showed more improved accuracy of recognizing container identifiers than the others proposed previously, in spite of using shorter training time.

컨테이너 식별자 영상 인식 시스템에서 다중 임계영역을 이용한 영상 전처리 (Image Preprocessing in Container Identifier Recognition System Using Multiple Threshold Regions)

  • 우종호
    • 한국멀티미디어학회논문지
    • /
    • 제16권5호
    • /
    • pp.549-557
    • /
    • 2013
  • 본 논문에서는 컨테이너 식별자 영상 인식 시스템의 전처리 과정에 다중 임계 영역을 사용하는 방안을 제안한다. 컨테이너 영상의 특징을 이용해서, 설정된 여러 개의 후보 임계 영역들을 사용해서 영상을 각각 이진화하고, 각각의 이진 영상에 대해서 라벨링, 패널링 등을 함께 진행하면서 최종적으로 최적의 문자 영역을 추출한다. 또한 유사한 방법을 적용해서 잡음을 제거하고 개별 문자를 분리한다. 영상 162장을 사용한 실험에서 문자 영역 분리와 개별 문자 분리의 성공률이 각각 99.04%와 98.09%가 되었다.

형태학적 특성과 FCM 기반 퍼지 RBF 네트워크를 이용한 컨테이너 식별자 인식 (Container Identifier Recognition Using Morphological Features and FCM-Based Fuzzy RBF Network)

  • 김광백;김영주;우영운
    • 한국정보통신학회논문지
    • /
    • 제11권6호
    • /
    • pp.1162-1169
    • /
    • 2007
  • 본 논문에서는 항만에서 취급하는 컨테이너의 식별자를 인식하는 방법을 제안한다. 실제 컨테이너 영상을 그레이 영상으로 변환한 후, 프리윗 마스크(Prewitt mask)를 적용하여 윤곽선을 검출하고 컨테이너를 식별할 수 있는 개별 식별자의 형태학적 특징 정보를 이용하여 식별자 후보 영역을 추출한다. 검출된 식별자 후보 영역은 개별 식별자 영역외에 잡음 영역이 포함되어 있으므로 4방향 윤곽선 추적 알고리즘과 Grassfire 알고리즘을 적용하여 잡음을 제거하고 개별 식별자들을 각각 객체화한다. 잡음이 제거된 식별자 후보 영역에서 객체화 한 개별식자는 컨테이너 식별을 위해 FCM 기반 퍼지 RBF 네트워크를 적용하여 인식한다. 본 논문에서 제안한 컨테이너 식별자 인식 방법의 성능을 평가하기 위해 실제 컨테이너 영상 300장을 대상으로 실험한 결과, 기존의 방법보다 인식 성능이 개선되었음을 확인할 수 있었다.

Recognition of Identifiers from Shipping Container Image by Using Fuzzy Binarization and ART2-based RBF Network

  • Kim, Kwang-Baek
    • 지능정보연구
    • /
    • 제9권2호
    • /
    • pp.1-18
    • /
    • 2003
  • The automatic recognition of transport containers using image processing is very hard because of the irregular size and position of identifiers, diverse colors of background and identifiers, and the impaired shapes of identifiers caused by container damages and the bent surface of container, etc. We proposed and evaluated the novel recognition algorithm of container identifiers that overcomes effectively the hardness and recognizes identifiers from container images captured in the various environments. The proposed algorithm, first, extracts the area including only all identifiers from container images by using CANNY masking and bi-directional histogram method. The extracted identifier area is binarized by the fuzzy binarization method newly proposed in this paper and by applying contour tracking method to the binarized area, container identifiers which are targets of recognition are extracted. We proposed and applied the ART2-based RBF network for recognition of container identifiers. The results of experiment for performance evaluation on the real container images showed that the proposed algorithm has more improved performance in the extraction and recognition of container identifiers than the previous algorithms.

  • PDF

윤곽선 추적과 개선된 ART1 기반 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 영상의 식별자 인식 (The Identifier Recognition from Shipping Container Image by Using Contour Tracking and Self-Generation Supervised Learning Algorithm Based on Enhanced ART1)

  • 김광백
    • 지능정보연구
    • /
    • 제9권3호
    • /
    • pp.65-79
    • /
    • 2003
  • 운송 컨테이너의 식별자를 추출하고 인식하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보를 이용하여 수직블록과 수평블록을 추출하여 컨테이너의 식별자 영역을 추출한다. 추출된 컨테이너의 식별자 영역에서 윤곽선 추적 알고리즘을 이용하여 개별 식별자를 추출하며, 그들의 인식을 위해서는 개선된 ARTl과 지도 학습 방법을 결합한 개선된 성능의 자가 생성 지도 학습 알고리즘을 제안하여 적용한다. 제안된 방법의 성능을 확인하기 위하여 운송 컨테이너 영상들을 대상으로 실험 결과, 윤곽선 추적 알고리즘을 이용한 식별자의 추출 방법이 히스토그램을 이용한 식별자의 추출 방법보다 추출률이 개선되었고 인식 결과에서도 개선된 ART1 기반 자가 생성 지도 학습 방법이 기존의 ART1 기반 자가 생성 지도 학습 방법보다 인식률이 향상되었다.

  • PDF

An Intelligent System for Recognition of Identifiers from Shipping Container Images using Fuzzy Binarization and Enhanced Hybrid Network

  • Kim, Kwang-Baek
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.349-356
    • /
    • 2004
  • The automatic recognition of transport containers using image processing is very hard because of the irregular size and position of identifiers, diverse colors of background and identifiers, and the impaired shapes of identifiers caused by container damages and the bent surface of container, etc. In this paper we propose and evaluate a novel recognition algorithm for container identifiers that effectively overcomes these difficulties and recognizes identifiers from container images captured in various environments. The proposed algorithm, first, extracts the area containing only the identifiers from container images by using CANNY masking and bi-directional histogram method. The extracted identifier area is binarized by the fuzzy binarization method newly proposed in this paper. Then a contour tracking method is applied to the binarized area in order to extract the container identifiers which are the target for recognition. In this paper we also propose and apply a novel ART2-based hybrid network for recognition of container identifiers. The results of experiment for performance evaluation on the real container images showed that the proposed algorithm performs better for extraction and recognition of container identifiers compared to conventional algorithms.