• Title/Summary/Keyword: Contact mechanics

Search Result 381, Processing Time 0.032 seconds

An Analysis of Fretting by the Frictional Contact (摩擦 接觸으로 인한 Fretting에 대한 연구)

  • 이대희;최동훈;윤갑영;임장근
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.99-107
    • /
    • 1990
  • Most of machines and structures contain the elements which contact each other directly. When these elements subjected to vibration or repeated load, local relative movement occurs between the elements in contact which results in, a kind of wear. In order to know the factors which govern fretting, we have to analyze the phenomenon of microslip which causes fretting by using a general and efficient method from a viewpoint of contact mechanics. Based on the results of analysis, it is necessary to propose the way of minizing fretting which is one of the most significant surface failure. In this report, a general and efficient algorithm is applied to analyze the contact problem of the bolted joint, which is one of the typical elements damaged by fretting, with ratios of plate thickness, the ratios of Young's moduli, the ratios of the plate thickness to bolt radius varied. Finally, the ways of minizing fretting for the boked joint are suggested.

Atomistic simulation and investigation of nanoindentation, contact pressure and nanohardness

  • Chen, Chuin-Shan;Wang, Chien-Kai;Chang, Shu-Wei
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.411-422
    • /
    • 2008
  • Atomistic simulation of nanoindentation with spherical indenters was carried out to study dislocation structures, mean contact pressure, and nanohardness of Au and Al thin films. Slip vectors and atomic stresses were used to characterize the dislocation processes. Two different characteristics were found in the induced dislocation structures: wide-spread slip activities in Al, and confined and intact structures in Au. For both samples, the mean contact pressure varied significantly during the early stages of indentation but reached a steady value soon after the first apparent load drop. This indicates that the nanohardness of Al and Au is not affected by the indentation depth for spherical indenters, even at the atomistic scale.

Finite element modeling of contact between an elastic layer and two elastic quarter planes

  • Yaylaci, Murat;Avcar, Mehmet
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • In this study, a two dimensional model of receding contact problem has been analyzed using finite element method (FEM) based software ANSYS and ABAQUS. For this aim finite element modeling of elastic layer and two homogeneous, isotropic and symmetrical elastic quarter planes pressed by means of a rigid circular punch has been presented. Mass forces and friction are neglected in the solution. Since the problem is examined for the plane state, the thickness along the z-axis direction is taken as a unit. In order to check the accuracy of the present models, the obtained results are compared with the available results of the open literature as well as the results of two software are compared using Root Mean Square Error (RMSE) and good agreements are found. Numerical analyses are performed considering different values of the external load, rigid circular radius, quarter planes span length and material properties. The contact lengths and contact stresses of these values are examined, and their results are presented. Consequently, it is concluded that the considered non-dimensional quantities have noteworthy influence on the contact lengths and contact stress distributions, additionally if FEM analysis is used correctly, it can be an efficient alternative method to the analytical solutions that need time.

A frictionless contact problem for two elastic layers supported by a Winkler foundation

  • Birinci, Ahmet;Erdol, Ragip
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.331-344
    • /
    • 2003
  • The plane contact problem for two infinite elastic layers whose elastic constants and heights are different is considered. The layers lying on a Winkler foundation are acted upon by symmetrical distributed loads whose lengths are 2a applied to the upper layer and uniform vertical body forces due to the effect of gravity in the layers. It is assumed that the contact between two elastic layers is frictionless and that only compressive normal tractions can be transmitted through the interface. The contact along the interface will be continuous if the value of the load factor, ${\lambda}$, is less than a critical value. However, interface separation takes place if it exceeds this critical value. First, the problem of continuous contact is solved and the value of the critical load factor, ${\lambda}_{cr}$, is determined. Then, the discontinuous contact problem is formulated in terms of a singular integral equation. Numerical solutions for contact stress distribution, the size of the separation areas, critical load factor and separation distance, and vertical displacement in the separation zone are given for various dimensionless quantities and distributed loads.

Contact analysis of spherical ball and a deformable flat model with the effect of tangent modulus

  • Sathish Gandhi, V.C.;Ramesh, S.;Kumaravelan, R.;Thanmanaselvi, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.61-72
    • /
    • 2012
  • The paper is on contact analysis of a spherical ball with a deformable flat, considering the effect of tangent modulus on the contact parameters of a non-adhesive frictionless elastic-plastic contact. The contact analysis of this model has been carried out using analysis software Ansys and Abaqus. The contact parameters such as area of contact between two consecutive steps, volume of bulged material are evaluated from the formulated equations. The effect of the tangent modulus is considered for determining these parameters. The tangent modulus are accounted between 0.1E and 0.5E of materials E/Y value greater than 500 and less than 1750. Result shows that upto an optimal tangent modulus values the elastic core push up to the free surface in the flat. The simulation is also carried out in Abaqus and result provide evidence for the volume of bulged material in the contact region move up and flow into the free surface of the flat from the contact edge between the ball and flat. The strain energy of the whole model is varied between 20 to 40 percentage of the stipulated time for analysis.

Efficient treatment of rubber friction problems in industrial applications

  • Hofstetter, K.;Eberhardsteiner, J.;Mang, H.A.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.517-539
    • /
    • 2006
  • Friction problems involving rubber components are frequently encountered in industrial applications. Their treatment within the framework of numerical simulations by means of the Finite Element Method (FEM) is the main issue of this paper. Special emphasis is placed on the choice of a suitable material model and the formulation of a contact model specially designed for the particular characteristics of rubber friction. A coupled thermomechanical approach allows for consideration of the influence of temperature on the frictional behavior. The developed tools are implemented in the commercial FE code ABAQUS. They are validated taking the sliding motion of a rubber tread block as example. Such simulations are frequently encountered in tire design and development. The simulations are carried out with different formulations for the material and the frictional behavior. Comparison of the obtained results with experimental observations enables to judge the suitability of the applied formulations on a structural scale.

Micro Patterning of Conductive Line by Micro Droplet Ejection of Nano Metal Ink (나노 금속잉크의 미세 액적 토출을 이용한 마이크로 패터닝)

  • Seo S.H.;Park S.J.;Jung H.C.;Joung J.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.689-693
    • /
    • 2005
  • Inkjet printing is a non-contact and direct writing associated with a computer. In the industrial field, there have been many efforts to utilize the inkjet printing as a new way of manufacturing, especially for electronic devices. For the application of inkjet printing to electronic field, one of the key factors is exact realization of designed images into printed patterns. In this work, micro patterning for conducting line has been studied using the piezoelectric print head and silver nano ink. Dimensions of printed images have been predicted in terms of print resolution and diameter of a single dot. The predicted and the measured values showed consistent results. Using the results, the design capability for industrial inkjet printing could be achieved.

  • PDF

Prediction of Fretting Fatigue Life on 2024-T351 Al-alloy (2024-T351 알루미늄 합금판 프레팅 피로수명 예측)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.601-611
    • /
    • 2007
  • Most of mechanically jointed aircraft structures are always encountered the fretting damages on the contact surfaces between two jointed structural members or at the edges of fastener holes. The partial slip and contact stresses associated with fretting contact can lead to severe reduction in service lifetime of aircraft structures. Thus a critical need exists for predicting fretting crack initiation in mechanically jointed aircraft structures, which requires characterizing both the near-surface mechanics and intimate relationship with fretting parameters. In this point of view, a series of fretting fatigue specimen tests for 2024-T351 Al-alloy, have been conducted to validate a mechanics-based model for predicting fretting fatigue life. And included in this investigaion were elasto-plastic contact stress analyses using commercial FEA code to quantify the stress and strain fields in subsurface to evaluate the fretting fatigue crack initiation.