• 제목/요약/키워드: Contact mechanics

검색결과 384건 처리시간 0.029초

Nonlocal finite element modeling of the tribological behavior of nano-structured materials

  • Mahmoud, F.F.;Meletis, E.I.
    • Interaction and multiscale mechanics
    • /
    • 제3권3호
    • /
    • pp.267-276
    • /
    • 2010
  • A nonlocal finite element model is developed for solving elasto-static frictional contact problems of nanostructures and nanoscale devices. A two dimensional Eringen-type nonlocal elasticity model is adopted. The material is characterized by a stress-strain constitutive relation of a convolution integral form whose kernel is capable to take into account both the diffusion process of nonlocal elasticity and the scale ratio effects. The incremental convex programming procedure is exploited as a solver. Two examples of different nature are presented, the first one presents the behavior of a nanoscale contacting system and the second example discusses the nano-indentation problem.

탄성체를 이용한 궤간가변 대차용 윤축시스템의 접촉력 해석 (Contact Mechanics of Variable-Gauge Wheeles With Flexible Body)

  • 이영주;배대성;김완구;장승호;한준석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.379-384
    • /
    • 2005
  • Research interest on flexible body dynamics, has been increased recently. The major application areas are the auto-mobile, train, and heavy machinery. This paper attempted the dynamic analysis for the variable-gauge wheelset with a flexible body, to better understand the dynamic characteristics of the variable-gauge wheelset. In order to achieve this goal, a 3D-Virtual Mock-up model was built. The tendency of the stress and deformation for the flexible lever was investigated through component mode synthesis, contact mechanics and flexible body dynamics. This study is a pioneering work for the development of Korean type variable-gauge wheelset.

  • PDF

선반작업에서 Ploughing Mechanism을 고려한 표면 거칠기에 관한 연구 (A Study on The Surface Roughness by Ploughing Mechanism in Turning Process)

  • 홍민성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.251-256
    • /
    • 1999
  • "Ploughing" on the flank face of the tool in the metal cutting process is due to the tool in the metal cutting process is due to the finite edge radius of the tool and due to the development of flank wear. Because of the high stresses near the cutting edge, elastic-plastic deformation would be caused between the tool and the machined surface over a small area of the tool flank. The deformation would affect the roughness of the machined surface. Recently, some attempts have been made to predict the surface roughness, but elastic-plastic effect due to ploughing in the cutting process has not been considered. The research has analyzed mechanism of the ploughing of the cutting process using contact mechanics. Tool and workpiece material properties have been taken into account in the prediction of the surface roughness. The surface roughness has been simulated by the surface-shaping system. The results between experiment and simulation have been compared and analyzed. analyzed.

  • PDF

초소형 부품 조작을 위한 Non-stick 마이크로 매니퓰레이션 시스템의 설계 (Design of Non-stick Micromanipulation for Handling of Micro particle)

  • 인용석;김유창;최혁렬;이상무;구자춘
    • 로봇학회논문지
    • /
    • 제4권3호
    • /
    • pp.225-232
    • /
    • 2009
  • In the high precision robot systems, the most popular tasks may be handling of micro-scale objects on a surface such as a micromanipulation robot system. In handling of micro-scale objects, the stiction effect becomes a fundamental issue since the micro-contact mechanics dominates the micromanipulation robot system. In the paper, a theoretical non-stick condition derived from the micro-contact mechanics is carried out for the propose of micro-scale object manipulation. To verify the non-stick condition, a micro-manipulation robot system equipped with a high precision stage system and a microscope system is developed. Experimental results show that the proposed non-stick condition guarantees successful micro-scale object manipulation.

  • PDF

Analytical modelling of multilayer beams with compliant interfaces

  • Skec, L.;Schnabl, S.;Planinc, I.;Jelenic, G.
    • Structural Engineering and Mechanics
    • /
    • 제44권4호
    • /
    • pp.465-485
    • /
    • 2012
  • Different mathematical models are proposed and their analytical solutions derived for the analysis of linear elastic Reissner's multilayer beams. The models take into account different combinations of contact plane conditions, different material properties of individual layers, different transverse shear deformations of each layer, and different boundary conditions of the layers. The analytical studies are carried out to evaluate the influence of different contact conditions on the static and kinematic quantities. A considerable difference of the results between the models is obtained.

No-backlash characteristics analysis of a cycloidal ball planetary transmission under axial pre-tightening

  • Yang, Ronggang;Wang, Naige;Xiang, Jiawei
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.481-492
    • /
    • 2022
  • Cycloidal ball planetary transmission (CBPT) has many applications as precision reducer, such as precision machinery and automation drive systems etc. The traditional analytical model of CBPT cannot accurately describe the change of the normal force of meshing points, and thus cannot describe the precise transmission process of meshing pairs. In the paper, a method for deriving the normal force equation is put forward by using the non-linear relationship between force and deformation in elastic mechanics. The two-point contact analytical models of all the meshing pairs are established to obtain the micro-displacement analytical model of CBPT under axial pre-tightening. Then, the non-real-time two-point contact analytical models of all the meshing pairs are further constructed to obtain the normal force expression to determine the critical compression coefficients. Experimental investigations are performed to verify the analytical model using the critical compression coefficients.

Characterization of the dynamic behavior of a linear guideway mechanism

  • Chang, Jyh-Cheng;Wu, Shih-Shyn James;Hung, Jui-Pin
    • Structural Engineering and Mechanics
    • /
    • 제25권1호
    • /
    • pp.1-20
    • /
    • 2007
  • Dynamic behaviors of the contact surface between ball and raceway in a guideway mechanism vary with the applied loads and hence affect the mechanical responses of machine tools. The study aims to investigate the nonlinear characteristics of dynamic behaviors at the rolling contact interface in linear guideway mechanisms. Firstly, analytical method was introduced to understand the contact behaviors based on Hertz contact theory in a point-to-point way. Then, the finite element approach with a three-dimensional surface-to-surface contact model and appropriate contact stiffness was developed to study the dynamic characteristics of such linear guideways. Finally, experiments with modal test were conducted to verify the significance of both the analytical and the numerical results. Results told that the finite element approach may provide significant predictions. The study results also concluded that the current nonlinear models based on Hertz's contact theory may accurately describe the contact characteristic of a linear guideway mechanism. In the modal analysis, it was told that the natural frequencies vary a little with different loading conditions; however, the mode shapes are changed obviously with the magnitude of applied loads. Therefore, the stiffness of contact interface needs to be properly adjusted during simulation which may affect the dynamic characteristics of the machine tools.

Examination of analytical and finite element solutions regarding contact of a functionally graded layer

  • Yaylaci, Murat;Adiyaman, Gokhan;Oner, Erdal;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.325-336
    • /
    • 2020
  • In this study, the continuous and discontinuous contact problems of functionally graded (FG) layer resting on a rigid foundation were considered. The top of the FG layer was loaded by a distributed load. It was assumed that the shear modulus and the density of the layer varied according to exponential functions along the depth whereas the the Poisson ratio remained constant. The problem first was solved analytically and the results were verified with the ones obtained from finite element (FE) solution. In analytical solution, the stress and displacement components for FG layer were obtained by the help of Fourier integral transform. Critical load expression and integral equation for continuous and discontinuous contact, respectively, using corresponding boundary conditions in each case. The finite element solution of the problem was carried out using ANSYS software program. In continuous contact case, initial separation distance and contact stresses along the contact surface between the FG layer and the rigid foundation were examined. Separation distances and contact stresses were obtained in case of discontinuous contact. The effect of material properties and loading were investigated using both analytical and FE solutions. It was shown that obtained results were compatible with each other.

Study on failure mechanism of line contact structures of nuclear graphite

  • Jia, Shigang;Yi, Yanan;Wang, Lu;Liu, Guangyan;Ma, Qinwei;Sun, Libin;Shi, Li;Ma, Shaopeng
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2989-2998
    • /
    • 2022
  • Line contact structures, such as the contact between graphite brick and graphite tenon, widely exist in high-temperature gas-cooled reactors. Due to the stress concentration effect, the line contact area is one of the dangerous positions prone to failure in the nuclear reactor core. In this paper, the failure mechanism of line contact structures composed of IG11 nuclear graphite column and brick were investigated by means of experiment and finite element simulation. It was found that the failure process mainly includes three stages: firstly, the damage accumulation in nuclear graphite material led to the characteristic yielding of the line contact structure, but no macroscopic failure can be observed at this stage; secondly, the stresses near the contact area met Mohr failure criterion, and a crack initiated and propagated laterally in the contact zone, that is, local macroscopic failure occurred at this stage; finally, a second crack initiated in the contact area and developed in to a Y-shape, resulting in the final failure of the structure. This study lays a foundation for the structural design and safety assessment of high-temperature gas-cooled reactors.

Johnson-Kendall-Roberts (JKR) 기법을 이용한 표면 에너지 및 고유접착에너지 측정 (Measurement of Surface Energy and Intrinsic Work of Adhesion Using Johnson-Kendall-Roberts (JKR) Technique)

  • 이대호;이동윤;조길원
    • 접착 및 계면
    • /
    • 제5권3호
    • /
    • pp.18-22
    • /
    • 2004
  • 본 실험에서는 Johnson-Kendall-Roberts (JKR) 기법을 이용하여 고체물질의 표면에너지 및 두 물질 사이의 고유접착에너지를 측정하였다. JKR 기법의 원리는 기본적으로 접촉역학(contact mechanics)에 기본을 두고 있으며 이를 통하여 기존의 접촉각 측정 방식을 통한 고체 표면에너지 측정 및 peel test와 같은 고전적인 방법을 통한 접착에너지의 측정에서의 한계점을 극복할 수 있는 새로운 방법으로 받아들여지고 있다. 본 연구에서는 polydimethylsiloxane (PDMS)를 이용하여 표면에너지를 측정함으로써 JKR 기법을 통한 측정 결과와 이의 응용가능성에 대해 알아보고자 하였다.

  • PDF