• Title/Summary/Keyword: Contact loss of catenary

Search Result 38, Processing Time 0.032 seconds

Design Essential Element Technology of Catenary System be in Correspondence with Speed-up (고속화에 대응한 전차선로 설계 요소기술)

  • Chang, Sang-Hoon;Kim, Yang-Soo;Park, Byung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.05b
    • /
    • pp.75-78
    • /
    • 2005
  • The decisive criteria to determine collection performance is the contact force between pantograph and catenary. The contact force consists of a static force and dynamic force related to vibration characteristics, train speed and etc. The low contact force leads to the loss of contact, and most countries regulate it below 1% at operation speed. This study presents a technical overview of criteria for collection performance of catenary system.

  • PDF

Implementation Technique of Real-time Monitoring System for High-Speed Rail Contact Wire with High Tension (고속철도 전차선로 고장력 실시간 모니터링 기술 구현)

  • Cho, Yong Hyeon;Park, Young;Jung, Hyun Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1256-1261
    • /
    • 2015
  • Along with the increase of railway catenary system operation speed to 400 km/h, there have been growing demands for good quality current collection systems that satisfy quality standards as well as criteria for safe working. Retaining uniform elasticity tension of contact wires is essential in maintaining high quality contact between pantograph and OCL (Overhead Contact Line) of current collection systems in high speed railways. Therefore, the tension of contact wire must be kept within tight tolerance limits in both working conditions and adverse weather conditions of catenary system. In accordance with these conditions, this paper presents a real time monitoring system for the tensioning device of the newly installed catenary system on the special route of Honam high speed line for 400 km/h operation. For the verification of the true value of tension of contact wires, we have developed ring-type tensioning sensors which were installed on supporting points of mast which compose the catenary system. According to the field test performed on the Honam high speed line catenary system, variation of tension was measured accurately in real-time.

On the Implementation of an Advanced Judgement Algorithm for Contact Loss of Catenary System (전차선의 집전상태 판단 알고리즘 구현)

  • Park, Young;Jung, Ho-Sung;Yun, Il-Kwon;Kim, Wonha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.850-854
    • /
    • 2014
  • Analyzing dynamic performance between pantograph and contact wire depends on mechanical and electrical conditions such as contact force, currents, aerodynamics of pantograph and tension of overhead contact wire. For the characteristic of dynamic performance between pantograph and overhead contact wire, various evaluation systems are used to measuring of the interaction of the contact line and the pantograph. Among the various methods, the contact force and percentage of arcing are intended to prove the safety and the quality of the current collection system on the train. However, these methods are only capable of measuring on the train which are installed measurement systems. Therefore in this paper, a track-side monitoring system was implemented to measure electrical characteristics from active overhead contact wire systems in order to constantly estimate current collection performance of railway operation. In addition, a method to analyze loss of contact phenomena was proposed. According to simulation results, the proposed system was capable of measuring abnormal electrical behavior of pantograph and contact wires on the track-side. The advantage of the proposed system is possible to detect loss of contact or any other electrical abnormalities of all types of trains within sections from sub to sub without the need to install any on-board equipment on trains.

The Study On The Dynamic Characteristics For The Pantograph Of A High-speed Rail Vehicle (고속전철용 판토그래프의 동적 특성 연구)

  • Kim, Jin-Woo;Park, Tong-Jin;Han, Chang-Soo;Chung, Kyul-Ryul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.571-577
    • /
    • 2001
  • In this paper, the dynamic response of the pantograph system that supplies electrical power to a high-speed rail vehicle were investigated. The analyses of the catenary based on the Finite Element Method (FEM) is executed to develop a pantograph fits well in high-speed focused on the dynamic characteristic analysis of the pantograph system. By simulation of the pantograph-catenary system, the static deflection of the catenary, the stiffness variation in contact lines, the dynamic response of the catenary undergoing constant moving load and the contact force analysis were executed. By the pantograph-catenary analysis, the design parameters of a pantograph could be optimized. For more improving the dynamic characteristics of the pantograph, the active-pantograph was investigated by controlling a contact force. The active pantograph showed the better performance compared to the parameter-optimized. However, the parameter-optimized pantograph would be acceptable for a high-speed rail vehicle through the design-parameter analysis.

  • PDF

Simulation-based Parametric Study of the Current Collection System of High Speed Trains (시뮬레이션에 의한 고속전철용 집전시스템 매개변수 연구)

  • 한형석
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.279-285
    • /
    • 2003
  • In an electric traction system in which power is supplied from a catenary via a pantograph, the mechanical design of the catenary and pantograph is clearly of importance in relation to the problem of current collection at high speed. A computer-simulation technique is used to study the effects of changing parameters of pantograph and catenary on the quality of current collection at high speed. The current collection system is evaluated on the basis of the contact-force variations and displacement responses of the pantograph and contact wire. This study shows that current-collection quality is determined primarily by the overhead line parameters rather than by the pantograph. The results can be applied to optimize the design of current-collection systems.

Improving the Dynamic Characteristics of the Pantograph Using the Sensitivity Analysis (동적 민감도 해석을 이용한 판토그래프의 동특성 개선)

  • Kim, Jin-Woo;Park, Tong-Jin;Wang, Young-Yong;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.679-685
    • /
    • 2001
  • In this paper, the dynamic response of the pantograph system that supplies electrical power to a high-speed rail vehicle were investigated. The analysis of the catenary based on the Finite Element Method (FEM) is executed to develop a pantograph fits well in high-speed focused on the dynamic characteristic analysis of the pantograph system. By simulation of the pantograph-catenary system, the static deflection of the catenary, the stiffness variation in contact lines, the dynamic response of the catenary undergoing constant moving load and the contact force analysis were executed. In order to consider the design variables that effects on the dynamic characteristic of the pantograph system performed the dynamic sensitivity analysis. From the pantograph-catenary analysis, the design parameters of a pantograph could be improved. From the results of the sensitivity analysis, a pantograph with improved parameters is suitable for a high-speed rail vehicle from the design-parameter analysis.

  • PDF

A study on the correlation between the degree of elasticity uniformity and the dynamic performance in the overhead contact lines (전차선로 탄성도 불균일율과 동역학적 성능과의 관계에 대한 연구)

  • Park, Sa-Hoon;Kwon, Sam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.502-502
    • /
    • 2007
  • A catenary system should be designed to have an uniform elasticity over a span in order to maintain the lowest possible loss of contact between a pantograph and a contact wire. A elasticity uniformity of a catenary can be regarded as a important design factor used for predicting the current collection performance for a catenary. There are a couple of formulas to calculate the degree of elasticity uniformity of a catenary according to the literature survey. The effectiveness of these formulas is reviewed by performing catenary elasticity and loss of contact analysis for various different configurations of catenary systems using a beam element based FEM program. The results reveals that these formulas are not suitable to predict the current collection performance for a catenary. Therefore, a new formula based on the standard deviation of the elasticity over a span is proposed in this study. The analysis results show that the new formula for an elasticity uniformity of a catenary is very effective in predicting the current collection performance for a catenary.

  • PDF

A Modeling and Simulation Implementation on the Power Line Disturbances by Loss of Contact for the High-Speed Railway Vehicle (고속전철 주행시 이선에 따른 전원외란 현상 모델링 및 시뮬레이션 구현)

  • Kim, Jae-Moon;Kim, Yang-Soo;Chang, Chin-Young;Gimm, Yoon-Myoung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1137-1142
    • /
    • 2008
  • In this paper, an effect on power conversion unit in high-speed railway vehicle by loss of contact between a catenary system and pantograph suppling electrical power to high-speed railway vehicle are investigated. One of the most important needs accompanied by increasing the speed of high-speed railway vehicle is reduced that arc phenomenon by loss of contact brings out EMI. in case of high-speed railway vehicle using electrical power, as comparison with diesel rolling stock, PLD(Power Line Disturbance) such as harmonic, transient voltage and current, EMI, dummy signal injection etc usually occur. To analysis the effect on loss of contact, it is necessary electrical modeling system between the contact line and the pantograph according to the loss of contact. Therefore analytical model of a contact line and a pantograph is constructed to simulate the behaviour of loss of contact. The reliability of the modeling system is verified by simulation implementation on kinds of loss of contact.

  • PDF

A study on the dynamic characteristic of voltage and current in a feeder system in case of cause contact loss on driving an electrical railway vehicle (전기차량 주행 중 이선상태에 따른 급전계통의 전압, 전류 동특성 연구)

  • Kim, Jae-Moon;Park, Young;Kim, Yang-Su;Lee, Jong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2215-2216
    • /
    • 2011
  • In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to electrical railway vehicle is investigated from an electrical response point of view. To analysis voltage and current waveforms by induced contact loss phenomenon on driving electrical railway vehicle, a hardware Simulator which considered contact loss between contact wire and the pantograph as well as contact wire deviation is developed. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system. Throughout prototype simulator and contact wire and catenary wire experiments, it is confirmed that current waveforms is distorted by contact loss phenomenon and in case of driving electrical railway vehicle.

  • PDF

Reduction of Power Disturbance by Contact Loss Phenomenon of a High Speed Electric Train Using Passive Filters (수동필터를 이용한 고속전철 이선현상에 의한 전원외란 저감)

  • Chang, Chin-Young;Jin, Kang-Hwan;Kang, Jeong-Nam;Park, Dong-Kyu;Kim, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.206-211
    • /
    • 2010
  • Since high-speed train is a dynamic load in which electric power is externally supplied, contact loss between the catenary and pantograph occurs. This phenomena including vibrations generates frequently irregular arcs, which, in turn causes EMI. Thus it is very important to develop the approach to reduce arc phenomenon by contact loss, as speed of electric railway vehicle increases. In case of an electric railway vehicle using electrical power, compared with diesel rolling stock, Power Line Disturbance(PLD) such as harmonics, transient voltage and current, Electromagnetic Interference(EMI), and dummy signal injection etc usually occur. In this study, the dynamic characteristics of a contact wire and a pantograph suppling electrical power to high-speed train are investigated with an electrical response point. To implement power line disturbance induced by contact loss phenomenon for high speed train operation, a hardware simulator which considers contact loss between contact wire and pantograph as well as contact wire deviation is developed. It is confirmed by the experiments that contact loss effect is largely dependent on voltage conditions when the contact loss occurs. Also, a passive filter is designed to reduce power disturbance and the designed system is verified by experiment.