• Title/Summary/Keyword: Contact forces

Search Result 608, Processing Time 0.028 seconds

Response Characteristics of a Lumped Parameter Impact System under Random Excitation (집중질량 충격시스템의 불규칙가진에 대한 응답특성)

  • 이창희
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.778-784
    • /
    • 1999
  • A method for obtaining the motion of an impact system whose primary and secondary system are composed of lumped masses, springs and dampers, and all the contacts are made through spring and damping elements is presented. The frequency response functions derived from the equations of motion and the impulse response functions obtained from the inverse Fourier transform of the derived frequency response functions are used for the calculation of the system responses. The procedure developed for the calculation of displacements and force time-histories was based on the convolution integrals of impulse response functions and forces applied to the systems. Time histories of displacements and contact forces are obtained for the case where a random excitation is applied to a point in the system. Impact statistics such as contact forces and the time between impacts calculated from those time histories is presented.

  • PDF

Study on quasi-static crawling system using a four bar mechanism (4절 메카니즘을 이용한 준정적 포복 시스템에 관한 연구)

  • 전용호;송낙윤;김희국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.924-927
    • /
    • 1996
  • In this work, we investigate the quasi-static crawling of the four-bar mechanism. Since the crawling of the mechanism is based on sliding of contact points of the mechanism with the ground, interaction forces and friction forces at contact points of the mechanism with the ground should be computed. For this purpuse, we introduce the concept of imaginary joints to find these forces. Therefore, we are able to treat the closed mechanism as a serial one. Also, sliding conditions of the mechanism in quasi-static equilibrium are examined. Lastly, the required torques for the mechanism to crawl with respect to various configurations of the mechanism but with a fixed ground friction are investigated.

  • PDF

Quasi-Static Crawling System Using a Four Bar Mechanism (4절 메커니즘을 이용한 준정적 포복 시스템)

  • Kim, Hae-Soo;Kim, Min-Gun;Yim, Nam-Sik;Kim, Wheekuk;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.226-232
    • /
    • 2002
  • In this work, the quasi-static crawling of the four-bar mechanism is investigated. Since the crawling of the mechanism is based on sliding of contact points of the mechanism with the ground, interaction forces and friction forces at contact points of the mechanism with the ground should be computed. For this purpose, we introduce the concept of imaginary joints to find these forces and treat the closed mechanism as a serial one. Lastly, the required torques for the mechanism to crawl with respect to various configurations of the mechanism on a flat ground with uniform friction coefficient, based on sliding conditions of the mechanism in quasi-static equilibrium, are investigated.

Sensitivity of resistance forces to localized geometrical imperfections in movement of drill strings in inclined bore-holes

  • Gulyayev, V.I.;Khudoliy, S.N.;Andrusenko, E.N.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • The inverse problem about the theoretical analysis of a drill string bending in a channel of an inclined bore-hole with localized geometrical imperfections is studied. The system of ordinary differential equations is first derived based on the theory of curvilinear flexible elastic rods. One can then use these equations to investigate the quasi-static effects of the drill string bending that may occur in the process of raising, lowering and rotation of the string inside the bore-hole. The method for numerical solution of the constructed equations is described. With the proposed method, the phenomenon of the drill column movement, its contact interaction with the bore-hole surface, and the frictional seizure can be simulated for different combinations of velocities, directions of rotation and axial motion of the string. Geometrical imperfections in the shape of localized smoothed breaks of the bore-hole axis line are considered. Some numerical examples are presented to illustrate the applicability of the method proposed.

Non-Contact Manipulation of Conductive Rod using Axial Magnet Wheels (축형 자기차륜을 이용한 전도성 환봉의 비접촉 조작)

  • Jung, Kwang-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.626-632
    • /
    • 2013
  • When a conductive rod is put within rotating axial magnet wheels arranged parallel, three-axial magnetic forces generate on the rod. In some region, the forces has a property of negative stiffness, thus they can be applied to noncontact conveyance of the rod without a control load. Apart from the passive driving, the magnet wheel should be controlled for the rod to be stayed at the still state or be moved in a specified velocity. But, because a control input is just the rotating speed of the magnet wheel, the number of input is less than that of variables to be controlled. It means that levitation force and thrust force increase at the same time for increasing wheel speed, resulting from a strong couple between two forces. Thus, in this paper, a novel method, in which the longitudinal motion of the rod is controlled indirectly by the normal motion of the rod with respect to the wheel center, is introduced to manipulate the rod without mechanical contact on space.

Optimization of Ground Contact Model of Ankleless Lower Exoskeleton Robot for Gait Simulation (보행 모의 실험을 위한 발목 없는 하지 외골격 로봇의 지면 접촉 모델 최적화)

  • Gimyeong Choi;Sanghyung Kim;Changhyun Cho
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.481-486
    • /
    • 2023
  • The purpose of this study is to optimize parameters of a contact model to obtain similar ground contact force of human walking. Dynamic walking simulation considering ground contact is performed to determine load specifications when developing walking assist robots. Large contact forces that are not observed in actual experimental data occur during the simulation at the initial contact (e.g., heel contact). The large contact force generates unrealistic large joint torques. A lower exoskeleton robot with no ankles is developed with the Matlab simscape and the nonlinear hyper volumetric contact model is applied. Parameters of the nonlinear hyper volumetric model were optimized using actual walking contact force data. As a result of optimization, it was possible to obtain a contact force pattern similar to actual walking by removing the large contact force generated during initial contact.

Non-contact Realtime 6D-Motion Tracking System (비접촉식 실시간 6자유도 운동계측시스템)

  • Jo, Yong-Beom;Pyeon, Yong-Beom;Do, Deok-Hui;Jo, Hyo-Je
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.479-484
    • /
    • 2003
  • A non-contact 6D motion tracking system is proposed. The system consists of two color cameras, a color image grabber and a host computer, Motions of a floating vessel was measured by the constructed system. The instantaneous forces of the floating vessel are analyzed. The floating vessel was put on the water in a small water container in free conditions. The measured forces are reconstructed by the measurement results. The system can be used to non-contact measurements for 6D dynamic analysis of floating vessels.

  • PDF

Higher order impact analysis of sandwich panels with functionally graded flexible cores

  • Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.389-415
    • /
    • 2014
  • This study deals with dynamic model of composite sandwich panels with functionally graded flexible cores under low velocity impacts of multiple large or small masses using a new improved higher order sandwich panel theory (IHSAPT). In-plane stresses were considered for the functionally graded core and face sheets. The formulation was based on the first order shear deformation theory for the composite face sheets and polynomial description of the displacement fields in the core that was based on the second Frostig's model. Fully dynamic effects of the functionally graded core and face-sheets were considered in this study. Impacts were assumed to occur simultaneously and normally over the top and/or bottom of the face-sheets with arbitrary different masses and initial velocities. The contact forces between the panel and impactors were treated as internal forces of the system. Nonlinear contact stiffness was linearized with a newly presented improved analytical method in this paper. The results were validated by comparing the analytical, numerical and experimental results published in the latest literature.

Corrections to the conventional equations of motion of a wheel-axle set on a tangent track (직선 선로상 차륜-윤축에 대한 기존운동방정식의 수정)

  • Choi, Sung-Kyou
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.927-939
    • /
    • 2007
  • This paper concerns dynamics of a wheel-axle set on a tangent track which was already published in a book titled "Dynamics of Railway Vehicle Systems" authored by Garg and Dukkipati [1], pointing out several missing terms and erroneous parts in the derived expressions on the conventional governing equations of motion. It is indicated that the x-direction components of normal forces at left and right wheel-rail contact points in the equilibrium axis were missed. Another point is that in deriving the creepages the disturbed velocity components in both x and y directions in the equilibrium axis should not be disregarded in the first term of the numerators. When considering the creepage in the y direction in the body coordinate system, the second term of lateral velocity at the contact point also cannot be neglected. Besides, the hyper-assumptions in the final expressions of vertical components of normal forces at left and right wheel-rail contact points have been recovered in reaching the final stage of analytical model development. Finally it is noteworthy that the process of applying creep theory is deemed to contain a little bit inconsistencies and ambiguities to be clear.

  • PDF

Dynamic Simulation for High-speed Pantograph and Overhead-line using a Vibration Mode Superposition Method (모드중첩법을 이용한 고속용 팬터그래프와 전차선의 동적 상호작용 시뮬레이션)

  • Cho, Yong-Hyeon;Lee, Ki-Won;Park, Hyun-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.494-497
    • /
    • 2004
  • A dynamic simulation for a high-speed pantograph-overheadline has been performed using mode superposition method to predict contact forces between pantograph and overheadline. We can deal with non-linear dampers of the pantograph and pre-sag of overhead-line for the simulation. But, we can not consider slackness of dropper in the overhead-line. According to the simulation results, the contact forces and displacements are reasonably predicted, compared with other foreign simulation results.

  • PDF