• Title/Summary/Keyword: Contact b.c

Search Result 325, Processing Time 0.031 seconds

Mechanical Properties of Refractory Metals at Extremly High Temperatures

  • Fischer, B.;Beschliesser, M.;Hoffmann, A.;Vorberg, S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.946-947
    • /
    • 2006
  • Driven by the unavailibility of commercial test equipment for tensile and creep testing at temperatures up to $3000^{\circ}C$ a measuring system has been developed and constructed at the University of Applied Sciences, Jena. These temperatures are reached with precision by heating samples directly by electric current. Contact-less strain measurements are carried out with image processing software utilizing a CCD camera system. This paper covers results of creep tests which have been conducted on TZM sheet material (thickness 2 mm) in different heat-treatment conditions in the temperature range between $1200^{\circ}C$ and $1600^{\circ}C$.

  • PDF

A Study on effect that position of contact area at adjacent side has on fractures of porcelains in case of porcelain fused to metal crown (금속 소부 도재관의 경우 인접면에서 접촉점의 위치가 도재 파절에 미치는 영향에 관한 연구)

  • Kim, Yong-Won
    • Journal of Technologic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.173-180
    • /
    • 2007
  • There was a great problem about the deposition between materials of a different kind at the beginnings of the introduction of porcelains, however, thereafter the deposition efficiency was settlded to the sufficient level of all user thanks to effort to have studied by many scholars and clinical authorities. But in a clinical process, as the difference of designs has an effect on fractures of porcelains, this researcher divided them into 4 groups of A: 1 mm, B: 2 mm, C: 3 mm, and D: 4 mm, and made 40 pieces to each 10 as the test samples to consider a length axis of tooth for studies in accordance with a position of a finishing line to meet between porcelain and metal at the contact point at the adjacent side to a metal porcelain. The sample materials are those to be use at the open market and the test samples wer completed by the same manufacturing technique to that of existent metal porcelain tube. s a result of the strength test on fractures, the average value is as in the following, A: 1 mm - 8.5bar, B: 2 mm - 10.5bar, C: 3 mm - 14.3bar, and D: 4 mm - 15.0bar. In case of the metal porcelain tube, the more faraway to process parts of metal and porcelain from the contact point of adjacent side has the stronger strength of fractures, Accordingly, the research shows that it had better to keep off more than 3 to consider a ledngth axis of tooth.

  • PDF

The wetting and interfacial reaction of vacuum brazed junction between diamond grit(graphite) and Cu-13Sn-12Ti filler alloy (다이아몬드 Grit(흑연)/ Cu-13Sn-12Ti 필러합금 진공 브레이징 접합체의 젖음성 및 계면반응)

  • Ham, Jong-Oh;Lee, Chang-Hun;Lee, Chi-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.66-66
    • /
    • 2009
  • Various alloy system, such as Cu-Sn-Ti, Cu-Ag-Ti, and Ni-B-Cr-based alloy are used for the brazing of diamond grits. However, the problem of the adhesion strength between the diamond grits and the brazed alloy is presented. The adhesion strength between the diamond grits and the melting filler alloy is predicted by the contact angle, thereby, instead of diamond grit, the study on the wettability between the graphite and the brazing alloy has been indirectly executed. In this study, Cu-13Sn-12Ti filler alloy was manufactured, and the contact angles, the shear strengths and the interfacial area between the graphites(diamond grits) and braze matrix were investigated. The contact angle was decreased on increasing holding time and temperature. The results of shear strength of the graphite joints brazed filler alloys were observed that the joints applied Cu-13Sn-12Ti alloy at brazing temperature 940 $^{\circ}C$ was very sound condition indicating the shear tensile value of 23.8 MPa because of existing the widest carbide(TiC) reaction layers. The micrograph of wettability of the diamond grit brazed filler alloys were observed that the brazement applied Cu-13Sn-12Ti alloy at brazing temperature $990^{\circ}C$ was very sound condition because of existing a few TiC grains in the vicinity of the TiC layers.

  • PDF

The Wetting and Interfacial Reaction of Vacuum Brazed Joint between Diamond Grit(graphite) and Cu-13Sn-12Ti Filler Alloy (다이아몬드 grit(흑연) / Cu-13Sn-12Ti 삽입금속 진공 브레이징 접합체의 젖음성 및 계면반응)

  • Ham, Jong-Oh;Lee, Chi-Hwan
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.49-58
    • /
    • 2010
  • Various alloy system, such as Cu-Sn-Ti, Cu-Ag-Ti, and Ni-B-Cr-based alloy are used for the brazing of diamond grits. However, the problem of the adhesion strength between the diamond grits and the brazed alloy is presented. The adhesion strength between the diamond grits and the melting filler alloy is predicted by the contact angle, thereby, instead of diamond grit, the study on the wettability between the graphite and the brazing alloy has been indirectly executed. In this study, Cu-13Sn-12Ti filler alloy was manufactured, and the contact angles, the shear strengths and the interfacial area between the graphites (diamond grits) and braze matrix were investigated. The contact angle was decreased on increasing holding time and temperature. The results of shear strength of the graphite joints brazed filler alloys were observed that the joints applied Cu-13Sn-12Ti alloy at brazing temperature $940^{\circ}C$ was very sound condition indicating the shear tensile value of 23.8 MPa because of existing the widest carbide(TiC) reaction layers. The micrograph of wettability of the diamond grit brazed filler alloys were observed that the brazement applied Cu-13Sn-12Ti alloy at brazing temperature $990^{\circ}C$ was very sound condition because of existing a few TiC grains in the vicinity of the TiC layers.

Effect of Surface Treated SiC on Thermal Stability and Mechanical Interfacial Properties of Carbon Fiber/Epoxy Resin Composites (탄소섬유 강화 에폭시 수지 복합재료의 열안정성 및 기계적 계면특성에 미치는 SiC 표면처리 영향)

  • 박수진;오진석;이재락;이경엽
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.25-31
    • /
    • 2003
  • In this work the effect of surface treated SiC on thermal stability and mechanical interfacial properties of carbon fiber/epoxy resin composites. The surface properties of the SiC were determined by acid/base values and contact angles. The thermal stabilities of carbon fiber/epoxy resin composites were investigated by TGA. The mechanical interfacial properties of the composites were studied in ILSS, critical stress intensity factor ($\textrm{K}_{IC}$), and critical strain energy release rate($\textrm{G}_{IC}$) measurements. As a result, the acidically treated SiC(A-SiC) had higher acid value than untreated SiC(V-SiC) or basically treated SiC(B-SiC). According to the contact angle measurements, it was observed that chemical treatments led to an increase of surface free energy of the SiC surfaces, mainly due to the increase of the specific(polar) component. The mechanical interfacial properties of the composites including ILSS, $\textrm{K}_{IC}$, and $\textrm{G}_{IC}$ had been improved in the specimens treated by chemical solutions. These results were explained that good wetting played an important role in improving the degree of adhesion at interfaces between SiC and epoxy resin matrix.

Microbial Quality and Safety of Fresh-Cut Broccoli with Different Sanitizers and Contact Times

  • Das, Basanta Kumar;Kim, Ji-Gang
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.363-369
    • /
    • 2010
  • This study was conducted to investigate the effects of different sanitizers and contact times on storage quality and microbial growth in fresh-cut broccoli. Fresh broccoli samples were cut into small pieces, washed each for 90 s and 180 s in normal tap water (TW), $100\;{\mu}/l$ chlorinated water (CL, pH 7), electrolyzed water (EW, pH 7.2) containing $100\;{\mu}/l$ free chlorine, or $2\;{\mu}/l$ ozonated water ($O_3$). Then, samples were packaged in 30-${\mu}m$ polyethylene bags and stored at $5^{\circ}C$ for 9 days. No significant differences were observed in gas composition and color parameters ($L^*$, $a^*$, $b^*$, and hue angle) among different sanitizers with contact times. No off-odor was detected during the storage. A longer contact time was not effective in reducing microbial population, except with $O_3$ washing. $O_3$ with 90 s was not much effective in reducing microbial population compared with Cl or EW. However, samples washed with $O_3$ for 180 s observed the lowest numbers of total aerobic and coliform plate counts. The result suggested that, a longer contact time of ozone can be used as a potential sanitizer to maintain the microbial quality and safety of fresh-cut broccoli.

Three dimensional finite element simulations of fracture tests using the Craft concrete model

  • Jefferson, A.D.;Barr, B.I.G.;Bennett, T.;Hee, S.C.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.261-284
    • /
    • 2004
  • Two enhancements to a recently developed plastic-damage-contact model for concrete are presented. The model itself, which uses planes of degradation that can undergo damage and separation but that can regain contact according to a contact law, is described. The first enhancement is a new damage evolution function which provides a completely smooth transition from the undamaged to the damaged state and from pre-peak to post-peak regions. The second is an improved contact function that governs the potential degree of contact with increasing opening on a crack plane. The use of a damage evolution function with a pre-peak has implications for the consistent tangent matrix/stress recovery algorithm developed for the model implementation, and amendments to this algorithm to accommodate the new function are described. A series of unpublished experimental tests on notched specimens undertaken in Cardiff in the mid 1990s are then described. These include notched beam tests as well as prismatic and cylindrical torsion tests. The tests are then considered in three dimensional finite element analyses using the modified Craft model implemented in the finite element program LUSAS. Comparisons between experimental and numerical data show reasonable agreement except that the numerical simulations do not fully describe the latter stages of the softening responses for the torsion examples. Finally, it is concluded that the torsion tests described provide useful benchmark examples for the validation of three-dimensional numerical models for concrete.

Influence of Multicultural contact Experience on the Relationship between Social Distance and Multicultural Acceptance among Nursing Students. (간호대학생의 사회적거리감과 다문화수용성의 관계에서 다문화접촉경험의 영향)

  • Noh, Yoon Goo;Lee, Oi Sun
    • Journal of Digital Convergence
    • /
    • v.16 no.1
    • /
    • pp.187-195
    • /
    • 2018
  • The purpose of this study was to identify the moderated effects of multicultural contact experience on the relationship between social distance and multicultural acceptability among nursing students. The sample for this study consisted of 174 nursing students from four universities located in Korea. Data were analyzed by descriptive statistics, t-test, ANOVA, $Scheff{\acute{e}}$ test, Pearson correlation and hierarchical multiple regression with SPSS/WIN 23.0. It was found that: (a) multicultural acceptability had a negative correlation with social distance(r=-.61, p<.001), whereas a positive correlation was observed with experience of multicultural contact(r=.24, p=.002); (b) the interaction effect by multicultural contact experience and social distance had a significant influence on the multicultural acceptability(${\beta}=-.18$, p=.003); (c) experience of multicultural contact moderated the relationship between social distance and multicultural acceptability(${\Delta}R^2=0.30$, p=.003). Results of the study suggest that the greater the experience of multicultural contact, the greater the negative effect of social distance on multicultural acceptability. Therefore, to increase the multicultural acceptability of nursing students, it is important to encourage the positive experiences of multicultural contact and thus reduce social distance.

Properties of Glass-Ceramics in the System CaO-TiO2-SiO2 with the Additives of Al2O3, ZrO2 and B2O3 for Use in the Solid Oxide Fuel Cells.

  • Lee, Jun-Suk;Park, Min-Jin;Shin, Hyun-Ick;Lee, Jae-Chun
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.336-340
    • /
    • 1999
  • Glasses in the system $CaO-TiO_2-SiO_2-Al_2O_3-ZrO_2-B_2O_3$ were investigated to find the glass seal compositions suitable for use in the planar solid oxide fuel cell (SOFC). Glass-ceramics prepared from the glasses by one-stage heat treatment at $1,000^{\circ}C$ showed various thermal expansion coefficients (i,e., $8.6\times10^{-6^{\circ}}C^{-1}$ to $42.7\times10^{-6^{\circ}}C^{-1}$ in the range 25-$1,000^{\circ}C$) due to the viscoelastic response of glass phase. The average values of contact angles between the zirconia substrate and the glass particles heated at 1,000-$1,200^{\circ}C$ were in the range of $131^{\circ}\pm4^{\circ}$~$137^{\circ}\pm9^{\circ}$, indicating that the glass-ceramic was in partial non-wetting condition with the zirconia substrate. With increasing heat treatment time of glass samples from 0.5 to 24 h at $1,100^{\circ}C$, the DC electrical conductivity of the resultant glass-ceramics decreased from at $800^{\circ}C$. Isothermal hold of the glass sample at $1100^{\circ}C$ for 48h resulted in diffusion of Ca, Si, and Al ions from glass phase into the zirconia substrate through the glass/zirconia bonding interface. Glass phase and diffusion of the moving ion such as $Ca^{2+}$ in glass phase is responsible for the electrical conduction in the glass-ceramics.

  • PDF

A Study on the Surface Modification of Polyimide Film by lon Implantation (이온주입법에 의한 폴리이미드박막의 표면 개질에 대한 연구)

  • 김종택;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.293-297
    • /
    • 1998
  • The influence of ion implantation on surface properties of polymers was studied. We investigated microhardness, friction, wear and wettablility of polyimide. Energies of 50, 200keV were used with doses range from $1{\times}10^{13} to 1{\times}10^{16} [ions/cm^2]$. The implanted ion species were B, N and Ar. The microhardness of polyimide was increased after implantation for doses of $1{\times}10^{15}\; [ions/cm^2]$. A reduction of the friction coefficient was in most case correlated with a reduction of wear. The contact angles of water for $B^+,N^+$ implanted polyimide decreased from $76^{\circ}C$ to zero, as the fluencies increased at energies of 50 and 200 KeV. However, the contact angle of Ar ion implanted polyimide did not change under ambient room conditions even if the time elapsed. SEM measurement was performed to characterize the modified surface layer.

  • PDF