• 제목/요약/키워드: Contact angle hysteresis

검색결과 43건 처리시간 0.03초

A hysteresis model for soil-water characteristic curve based on dynamic contact angle theory

  • Liu, Yan;Li, Xu
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.107-116
    • /
    • 2022
  • The steady state of unsaturated soil takes a long time to achieve. The soil seepage behaviours and hydraulic properties depend highly on the wetting/drying rate. It is observed that the soil-water characteristic curve (SWCC) is dependent on the wetting/drying rate, which is known as the dynamic effect. The dynamic effect apparently influences the scanning curves and will substantially affect the seepage behavior. However, the previous models commonly ignore the dynamic effect and cannot quantitatively describe the hysteresis scanning loops under dynamic conditions. In this study, a dynamic hysteresis model for SWCC is proposed considering the dynamic change of contact angle and the moving of the contact line. The drying contact angle under dynamic condition is smaller than that under static condition, while the wetting contact angle under dynamic condition is larger than that under static condition. The dynamic contact angle is expressed as a function of the saturation rate according to the Laplace equation. The model is given by a differential equation, in which the slope of the scanning curve is related to the slope of the boundary curve by means of contact angle. Empirical models can simulate the boundary curves. Given the two boundary curves, the scanning curve can be well predicted. In this model, only two parameters are introduced to describe the dynamic effect. They can be easily obtained from the experiment, which facilitates the calibration of the model. The proposed model is verified by the experimental data recorded in the literature and is proved to be more convenient and effective.

벼 잎 표면에서 액적의 이방성 흐름 특성에 관한 연구 (A Study on the Anisotropic Flow Characteristics of Droplets on Rice Leaf Surface)

  • 김태완
    • Tribology and Lubricants
    • /
    • 제33권6호
    • /
    • pp.251-255
    • /
    • 2017
  • In this study, we aimed to clarify the wettability and anisotropic flow characteristics of rice leaves as a basic study for engineering applications of anisotropic flow characteristics of rice leaf surface. To investigate the surface structure of rice leaf, the micro grooves and asperities of rice leaves were analyzed and quantified by scanning electron microscope, Confocal laser scanning microscopy, and stylus profilometer. The analysis of the structure of rice leaf surface confirmed that asymmetrical cone - like protrusions in leaf veins were inclined toward the leaf tip. The static contact angle test showed that the contact angle at the midline vein or leaf vein location where the micropapilla is concentrated is about $20^{\circ}$ higher than the leaf blade position. The contact angles of fresh and dried rice leave were also compared. The dried rice leaves showed a contact angle of about $5^{\circ}$ to $15^{\circ}$ higher than that of fresh leaves, suggesting that the volume of the protrusions decreased as the water was removed, thus reducing the contact area with the droplet. In the contact angle history test the hysteresis in the leaf tip direction was found to be much lower than that in the leaf petiole direction. This results can be explained that asymmetrical cone - like protrusions had a significant effect on the droplet flow characteristics through contact angle hysteresis experiment.

섭동법을 이용한 만곡 리뷸릿에 관한 이론적 연구 (Perturbation Analysis of a Meandering Rivulet)

  • 김진호;김호영;강병하;이재헌
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1196-1204
    • /
    • 2001
  • The rivulet is a narrow stream of liquid flowing down a solid surface. When the rivulet\`s flow rate exceeds a certain limit, it tends to meander exhibiting the instability of its interface. This analysis performs a perturbation analysis of this meandering rivulet assuming an inviscid flow possessing contact angle hysteresis at the contact line. The analysis reveals that the contact angle hysteresis as well as the velocity difference across the inter-face, strongly induces the instability of the liquid interface. Moreover, when the rivulet veto-city is low, it is predicted that the axisymmetric disturbance amplifies more rapidly than the anti-axisymmetric disturbance, which explains the emergence of the droplet flow at the low velocity regime.

  • PDF

동접촉각 이력 효과를 포함한 평판 위에서 액적의 충돌 및 결합 현상에 대한 수치적 연구 (NUMERICAL STUDY OF DROPLET IMPACT AND MERGING PROCESSES ON A FLAT SUBSTRATE WITH CONTACT ANGLE HYSTERESIS)

  • 이우림;손기헌
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.103-108
    • /
    • 2009
  • The droplet impact and merging process on a flat substrate with contact angle hysteresis is numerically studied. The droplet deformation is determined by an improved level-set method employing a sharp-interface technique for the stress condition at the liquid-gas interface and the contact angle condition at the liquid-gas-solid interline. Based on the computations, the droplet impact and merging pattern is investigated to find the optimal condition in manufacturing a micro-line. The effects of dynamic contact angles and droplet spacing on droplet motion are quantified.

  • PDF

접촉각 측정과 AFM/LFM을 이용한 불화 유기박막의 특성 평가 (Characterization of Fluorocarbon Thin Films by Contact Angle Measurements and AFM/LFM)

  • 김준성;차남구;이강국;박진구;신형재
    • 마이크로전자및패키징학회지
    • /
    • 제7권1호
    • /
    • pp.35-40
    • /
    • 2000
  • Teflon-like fluorocarbon thin film was deposited on various substrates by vapor deposition using PFDA (perfluorodecanoic acid). The fluorocarbon films were characterized by static/dynamic contact angle analysis, VASE (Variable-angle Spectroscopic Ellipsometry) and AFM/LFM (Atomic/Lateral Force Microscopy). Based on Lewis Acid/Base theory, the surface energy ($S_{E}$) of the films was calculated by the static contact angle measurement. The work of adhesion (WA) between de-ionized water and substrates was calculated by using the static contact data. The fluorocarbon films showed very similar values of the surface energy and work of adhesion to Teflon. All films showed larger hysteresis than that of Teflon. The roughness and relative friction force of films were measured by AFM and LFM. Even though the small reduction of surface roughness was found on film on $SiO_2$surface, the large reduction of relative friction farce was observed on all films. Especially the relative friction force on TEOS was decreased a quarter after film deposition. LFM images showed the formation of "strand-like"spheres on films that might be the reason far the large contact angle hysteresis.

  • PDF

경사면에서의 리뷸릿 유동에 관한 연구 (A Study of Rivulet Flow on Inclined Surface)

  • 김진호;김호영;이재헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.576-581
    • /
    • 2001
  • When a liquid is supplied through a nozzle onto a relatively nonwetting inclined solid surface, a narrow rivulet forms. This work provides novel physical insights into the following phenomena in the rivulet flow that have not been well understood to date. Firstly, the fundamental mechanism behind the transition of a linear rivulet to a droplet flow is investigated. The experiments show that the droplet flow emerges due to the necking of a liquid thread near the nozzle. Based on the observation, it is argued that when the retraction velocity of a liquid thread exceeds its axial velocity, the bifurcation of the liquid thread occurs, and this argument is experimentally verified. Secondly, a discussion on the curved motion of a meandering rivulet is given. This study proposes the contact angle hysteresis as a primary origin of the centripetal force that enables the rivulet's curved motion A simple scaling analysis based on this assumption predicts a radius of curvature which agrees with the experimental observation.

  • PDF

경사면에서의 리뷸릿 유동에 관한 연구 (A Study of Rivulet Flow on an Inclined Solid Surface)

  • 김진호;김호영;강병하;이재헌
    • 설비공학논문집
    • /
    • 제13권10호
    • /
    • pp.1042-1048
    • /
    • 2001
  • When a liquid is supplied through a nozzle onto a relatively non-wetting inclined solid surface, a narrow rivulet forms. This work provides novel physical insights into the following phenomena in the rivulet flow that have not been well understood to date. Firstly, the fundamental mechanism behind the transition of a linear rivulet to a droplet flow is investigated. The experiments show that the droplet flow emerges due to the necking of a liquid thread near the nozzle. Based on the observation, it is argued that when the axial velocity of a liquid is slower than the retraction velocity of its thread, the bifurcation of the liquid thread occurs, and this argument is experimentally verified. Secondly, a discussion on the curled motion of a meandering rivulet is given. This study proposes the contact angle hysteresis as a primary origin of the centripetal force that enables the rivulet\`s curved motion. A simple scaling analysis based on this assumption predicts a radius of curvature which agrees with the experimental observation.

  • PDF

경사진 고체 표면 위를 내려가는 액적의 미글림 유동

  • 김진호;김호영;강병하;이재헌
    • 설비공학논문집
    • /
    • 제13권10호
    • /
    • pp.1025-1033
    • /
    • 2001
  • A scaling analysis is provided which predicts the sliding velocity of a liquid drop down an inclined surface. The analysis is based on the balance of the gravitational work rate that drives the drop sliding and the resistances by capillary and viscous forces. The capillary resistance is accounted for via the contact angle hysteresis, which is quantified by measuring the critical inclination causing the drop to start sliding. The sliding of the drop is governed by the rate of the viscous dissipation of the Stokes flow. The analysis result in its limit form for small contact angles is consistent with previous results. In the experiments to verify the analysis results, the measured sliding velocity of various liquid drops are shown to obey the predictions made in this study.

  • PDF

상용 Gentoo 폴리머가 경화된 고체주입표면에서 물방울 거동 (Water droplet behavior on a solid-infused surface cured with commercial Gentoo polymer)

  • 김형원;김정현
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.61-67
    • /
    • 2024
  • In this study, the behavior of water droplets on a solid-infused surface was evaluated by quantifying a water droplet's contact angle, sliding angle, and terminal velocity. The contact angle hysteresis and sliding angle of water on the solid-infused surface were measured to be lower than those of the hydrophobic PTFE surface. It led to the enhancement of the initiation of the water droplet's movement. When the capillary number was lower than Ca < 0.004, the terminal velocity of the water droplet on the solid-infused surface was higher than the PTFE surface due to the low contact line resistance. However, the transition of the droplet morphology from a hemispherical shape to a streamlined teardrop shape beyond Ca > 0.004 lost the effect of reducing frictional resistance on the solid-infused surface.

Simplified Ground-type Single-plate Electrowetting Device for Droplet Transport

  • Chang, Jong-Hyeon;Kim, Dong-Sik;Pak, James Jung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.402-407
    • /
    • 2011
  • The current paper describes a simpler ground-type, single-plate electrowetting configuration for droplet transport in digital microfluidics without performance degradation. The simplified fabrication process is achieved with two photolithography steps. The first step simultaneously patterns both a control electrode array and a reference electrode on a substrate. The second step patterns a dielectric layer at the top to expose the reference electrode for grounding the liquid droplet. In the experiment, a $5{\mu}m$ thick photo-imageable polyimide, with a 3.3 dielectric constant, is used as the dielectric layer. A 10 nm Teflon-AF is coated to obtain a hydrophobic surface with a high water advancing angle of $116^{\circ}$ and a small contact angle hysteresis of $5^{\circ}$. The droplet movement of 1 mM methylene blue on this simplified device is successfully demonstrated at control voltages above the required 45 V to overcome the contact angle hysteresis.