• Title/Summary/Keyword: Contact Wheel

Search Result 432, Processing Time 0.037 seconds

A study on the wheel vibration using modal analysis and impact test (모드 해석과 충격 가진을 이용한 차륜 진동에 대한 연구)

  • Lee Tae-Wook;Woo Kwan-Je;Kim Jong-Nyeun;Lee Hwa-Soo
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.734-739
    • /
    • 2003
  • When a train moves on rails, wheel and rail vibrate to produce contact noise and contact force. The former results in airborne noise and the latter transmits through bogie and excites carbody to generate structure borne noise. In this paper, wheel vibration is studied by theoretical and experimental approaches. Theoretical analysis is performed by finite element method and experimental analysis is performed by impact test. Using modal analysis and model tunning, we could have good agreement between the two approaches.

  • PDF

The research on wear simulation between wheel and rail for Korea High Speed Railway (고속철도 차량의 차륜과 레일간의 마모 예측)

  • Choi Jeung-Hum;Moon Tai-Seon;Kim Ki-Hwan;Han Dong-Chul
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.369-376
    • /
    • 2003
  • The purpose of this work is to general approach to numerically simulating wear in rolling and sliding contact area between wheel and rail interface based on the analysis of dynamics characteristics with general MBS package. A simulation scheme is developed that calculates the wear at a detailed and various level. The estimation of material removal follows Archard's wear equation which states that the reduction of volume is linearly proportional to the sliding distance, the normal applied load and the wear coefficient and inverse proportional to hardness. The main research application is the wheel-rail contact of Korea High Speed Railway.

  • PDF

Effects of Wheel Condition on Solidification Characteristics of Al-Cu Polycrystalline Ribbon (Al-Cu 다결정 리본의 응고거동에 미치는 휠조건의 영향)

  • Kim, Ju-Hyung;Lee, Sang-Mok;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.276-285
    • /
    • 1997
  • The effect of wheel surface condition on solidification behavior of Al-Cu ribbon was investigated in order to establish extreme levels of heat extraction. The condition of wheel surface was changed either by heating the wheel surface up to $200^{\circ}C$ or by coating boron nitride(BN) onto the the rim of a wheel. Heating the wheel surface up to $200^{\circ}C$ improved the wetting behavior between the molten metal and the rotating wheel, leading to an increase in the ratio of columnar structure to the entire thickness of Al-4.3wt%Cu and Al-33.2wt%Cu ribbons. For Al-4.3wt%Cu ribbon, assuming one grain as a single heterogeneous nucleation event at the contact point, the nucleation density with the wheel surface heated to $200^{\circ}C$, was $4{\times}10^6/mm^2$, and in the cases of BN coating with thin and thick layers, $10^5/mm^2$ and $5{\times}10^4/mm^2$, respectively. The largest cooling capacity of the wheel corresponded to the heated wheel surface, and as the thickness of BN coating layer increased, the cooling capacity of the wheel gradually decreased.

  • PDF

Shape Optimization of an Automotive Wheel Bearing Seal Using the Response Surface Method (반응표면법을 사용한 자동차용 휠 베어링 시일의 형상 최적화)

  • Moon, Hyung-Ll;Lm, Jong-Soon;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.84-90
    • /
    • 2010
  • This paper presents the shape optimization process for the automotive wheel bearing seal lip using the finite element method and the response surface method. First, to predict performance of the bearing seal lip, we used the non-linear finite element analysis. And then, we compared the analysis results with the test results to verify the finite element model. The objective function in optimizing process was obtained from results of the mud slurry test, which is one of many tests for evaluating performance of wheel bearing. After the mud slurry test for the four models which have the similar cross-sectional shape, we measured the wear area of the seal lip and the moisture content in grease. The objective function has been chosen by comparing the results of mud slurry test and characteristics of seal lip, such as contact force, contact area, contact pressure, and interference. Finally, within limited design parameters, we suggested the optimized shape of seal lip, which is expected to improve the wear and the sealing effect of it.

Development of a Dynamic Simulation Program Including a Wheel-Rail Contact Module (휠-레일 접촉모듈을 포함한 동역학 해석 프로그램 개발)

  • Cho, Jae-Ik;Park, Tae-Won;Yoon, Ji-Won;Lee, Soo-Ho;Jung, Sung-Pil
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • Various programs for dynamic simulation of the railway vehicle have advantages and disadvantages. These programs have limitation that cannot express a large deformable body for an wire of the railway vehicle. In this study, a program for dynamic simulation of the railway vehicle is developed. And the rigid, flexible and large deformable body can be simulated using this program. Its reliability is verified by comparison with a commercial program. Also, a wire is considered as the large deformable body and a sliding joint which connects the rigid body to the large deformable body is included. Moreover, as the wheel-rail contact module is added, the dynamic simulation of the railway vehicle can be analyzed using the developed program.

A study about structural analysis of double structured non-pneumatic wheel (이중구조를 가진 비공기압바퀴의 구조해석에 관한 연구)

  • Song, Gi-Hwan;Lee, Sang-Hun;Son, Chang-Woo;Seo, Hyoung-Jin;Seo, Tae-Il;Yoo, Wha-Wul;Park, Sung-Hak;Park, Kyung-Hoon
    • Design & Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.19-23
    • /
    • 2015
  • Non-pneumatic wheels have been widely used instead of general tube type wheels beause of many reasons, for example, wheel size, price restriction, heavy-duty problem and so on. Almost small size wheels or casters were non-pneumatic type but structural stability was not certified. This paper presents a double structured non-pneumatic wheel, called "smart caster", which consisted with inner and outer wheels connected by chips, and finite element analysis processes were conducted in order to determine important dwsign factors before actual design for mass production. For structural analysis ABAQUS was used under various boundary conditions with incrementally varied loads until 2,000N. Then structural staility was evaluated according to varied loads below ultimate stress. Generally stresses were concentrated at the lower parts of the wheel, and especially contact parts between wheel and ground. In addition, maximum stress appeared at contact parts between the wheel lower part and chips.

  • PDF