• 제목/요약/키워드: Contact Stress Distribution

검색결과 278건 처리시간 0.025초

LNG차량용 연료탱크의 지지시스템 구조해석에 관한 연구 (A Study on the Structural Analysis of the Supporting System for LNG Vehicle Fuel Tank)

  • 윤상국;김동혁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.841-846
    • /
    • 2008
  • Recently the LNG(liquified natural gas) public buses have been introduced to prevent the air pollution in metropolitan areas. As the LNG temperature in fuel tank is as low as $-162^{\circ}C$. the thermal and structural effects of tank components need to be studied for safe introduction in the market. Especially the support system of LNG fuel tank in vehicle, which has connected with inside and outside of tanks, should put attention to reduce the structural stress due to cryogenic temperature and to restrict the heat flux from ambient. There are two supporting systems in the tank, that one is connected between inside and outside tanks by welding, and the other is the inserted support system which is a cylindrical SUS bar inserted in a hole of the supporting plate. In this study the temperature distribution and thermal stress of the inserted support system were evaluated by using the utility program as ANSYS. The results showed that the rate of heat transfer to inner tank through this support system was quite small due to limited contact of support bar with plate. but the thermal stress of support plate was obtained beyond the limited tensile value of SUS304. The cautious design for the support plate part, therefore, should be given to make the safe support system of LNG vehicle fuel tank.

래티스 돔 구조물의 탄소성 거동 특성에 관한 연구 (The Characteristics of Elasto-Plastic Behaviour for the Latticed Dome Structures)

  • 박철호;한상을;양재근
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.53-62
    • /
    • 2004
  • A single layer latticed dome is one of the most efficient structures because of its low specivic gravity. For easily analyzing of a single layer latticed dome, joint system is assumed to be pin or rigid joint. However, its joint uses ball whose system has intermediate properties of pin and rigid joint. Therefore this study has a grasp of bending rigidity, stress and mechanical properties through experimental and analyzing method of the bolt inserted ball joint. To analyze the stress of bolt and sleeve, this study uses through 3D elastic contact and cubic element, and then the ball and the bolt are perfectly connected for easily analyzing Compared experimental results to F.E.M, each specimen has an error of less than 12 percent. In the results of stress distribution through F.E.M, stress occurs from bottom of bolt to top of sleeve, and most of tension appears on the bolt, also compression occurs from upper parts of the bolt to the sleeve. The assumption of bending stiffness in ball joint is well known that bolt resists only tension and upper sleeve resiss compression. The results of experiment and analysis have $7{\sim}56%$ error, assuring that upper part of bolt occurs of partial compression. In the result of modified assumption have $4{\sim}20%$ error.

  • PDF

고강도${\cdot}$고인성의 알루미늄 연속 주조기용 롤쉘 개발 (Development of Roll Shell for Aluminium Continuous Casters of High Strength and High Toughness)

  • 김병훈;박영철;김정태;이우동
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.216-222
    • /
    • 2004
  • The caster roll shells have the good thermal conductivity and the low thermal expansion and have to exhibit high enough strength and good ductility at temperature up to $600^{\circ}C$. Thermal stress in particular is very high due to the contact with the liquid aluminium. The main stresses are of thermal origin, which bring a plastic fatigue on surface. This paper will represent one survey about the investigation of the failure of roll shells for continuous casters and an analysis using the simulation of the temperature distribution and the state of stress during hot rolling. Moreover, there will be a discussion on the roll shell of Mod. HAR 5 which is developed by heat treatment process. Mod. HAR 5 has advantages of high strength, high toughness and increased thermal stress resistance while maintaining the same productivity as the conventional roll.

  • PDF

유한요소법을 이용한 정밀진단 변형부의 응력해석 (The tress Analysis in the Fine-blanking deformation zone by the application of the FEM)

  • 오환섭
    • 한국생산제조학회지
    • /
    • 제8권6호
    • /
    • pp.84-91
    • /
    • 1999
  • The goal of this study is to analyse the stress and the strain occurring within the work piece at the fine-blanking process and hence to assume the size direction and a distribution chart of the shearing stress as the penetration of the punch is being increased trough the application of the FEM. For this analysis we introduced the piece-wise linear method in the non linear structural analysis program for large deformation sheet metal forming and we defined it as the problem of the non linear contact. Therefore we modeled the above problems as quadratic-nodded axi-symmetrical elements for the character-istics of the work piece. From the result of this analysis it was found that the shearing stress is a great deal occurred on the surface of the work piece during the beginning process of the punch penetration and it's effect is expected to influence importantly for the formation of burnish because the deeper is the penetration of the punch in the narrow clearance zone. the greater is the degree of the strain stress.

  • PDF

응력상태의 비정질 표면에 형성된 압입흔적 회복인자를 이용한 잔류응력 분석 (Analysis of Residual Stress through a Recovery Factor of Remnant Indents Formed on Artificially Stressed Metallic Glass Surfaces)

  • 이윤희;유하영;백운봉;남승훈
    • 대한금속재료학회지
    • /
    • 제48권3호
    • /
    • pp.203-209
    • /
    • 2010
  • An application of the instrumented indentation technique has been expanded from the measurements of hardness and elastic modulus to the analysis of residual stress. A slope of the indentation loading curve increases (or decreases) according to compressive (or tensile) residual stress. A theoretical equation has been established for quantifying residual stress from the slope change. However, a precise observation of the remnant indents is indispensible because the theoretical approach needs actual contact information. In addition, the conventional hardness test is still used for predicting the residual stress distribution of welded joints. Thus, we observed the three-dimensional morphologies of the remnant indents formed on artificial stress states and analyzed stress effects on morphological recovery of the indents. First, a depth recovery ratio, which has been regarded as a sensitive stress indicator, did not show a clear dependency with the residual stress. Thus an analysis on volumetric recovery was tried in this study and yielded a inverse proportional behavior with the residual stress. In addition, an elastic to plastic volume recovery ratio showed more significant correlation with the residual stress.

상악측절치 수복을 위한 Cantilever bridge (STRESS ANALYSIS ON THE ALVEOLAR BONE OF CANTILEVER BRIDGES REPLACING MAXILLARY LATERAL INCISOR)

  • 김형수;양홍서
    • 대한치과보철학회지
    • /
    • 제31권3호
    • /
    • pp.303-316
    • /
    • 1993
  • The purpose of this study was to analysis the stress distribution induced by three unit PFM bridges and various cantilever bridges replacing maxillary latersal incisor. The simplified two-dimensional photoelastic models used for this study was contructed in the folio- wing way. CR/R ratio was designed to be 1 : 1, 1 : 1.25 and 1 : 1.5. The pontics of cantilever bridge supported by maxillary canines consisted of wrap-around type, rest-extension type, and simple type. 3-unit PFM bridge was constructed with traditional method. 1kg vertical static load was applied on the center of the incisal edge of the pontic. The stress pattern was examined and recorded by photography. The results obtained were as follows ; 1. The magnitude of stress on the abutment root apex area of a traditional 3-unit bridge was the lowest. 2. The model of cantilevered pontic with a rest showed the relatively well distributed stress around the abutment tooth. The model with simple pontic generated the greatest stress concentration in the supporting structure of the abutment tooth. 3. As the height of bone level reduced, the rotational and vertical force increased around the abutment tooth. 4. The stress concentration of the 3-unit bridges occured on the root apex and stress concentration of the cantilever briage occured on the root apex and cervix area, 5. In the case of the cantilever bridge, stress concentrated distally on the root apex area of the abutment tooth and additional stress was observed mesially on the upper part of the root. Especially in the case of the simple pontic, was phenomenon was more apparent than the others. 6. Force applied to cantilevered pontic was transmitted to the adjacent central incisor through the contact surface. Stress was markedly observed on the mesial cervix area in the case of simple pontic and on the root apex area in the case of wrap-around type and rest-extension type.

  • PDF

Non-Newtonian thermal Effects in Elastohydrodynamic Lubrication between the Two Rolling Systems

  • Kim, Joon-Hyun;Kim, Joo-Hyun
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.87-88
    • /
    • 2002
  • To analyze complicated phenomena on the fluid hydrodynamic and the elastic deformation between sliding body surfaces, an analysis to the elastohydrodynamic lubrication of sliding contacts has been developed taking into account the thermal and non-Newtonian effects. The computational technique handled the simultaneous solution of the non-Newtonian hydrodynamic effects, elasticity, the load, the viscosity variation, and temperatures rise. The results included the lubricant pressure profile, film thickness, velocity, shear stress, and temperature distribution, and the sliding frictional force on the surface at various slip conditions. These factors showed a great influence on the behavior resulted in the film shape and pressure distribution. Especially, Non-Newtonian effects and temperature rise by the sliding friction force acted as important roles in the lubrication performance.

  • PDF

클러치 마스터실린더 주 컵-시일의 유한요소해석 (Finite Element Analysis of Primary Cup-Seal in a Clutch Master Cylinder)

  • 임문혁;이재천;구본은
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.143-150
    • /
    • 2002
  • The characteristics of rubber cup seal is highly nonlinear due to the nature of the material's non-linearity and large deformation with frictional contact. And the performance of sealing in master cylinders of automobile is one of the most important factors which affects the safety of drivers. The effects of various shape of the primary cup seal in clutch master cylinder was investigated to reduce oil leakage and to obtain a long reliable life. Deformation and distribution of stresses on the primary cup seal against hydraulic oil pressure were analyzed with changing design parameters such as depth and radius in cup-seal. The obtained results indicate that the depth of cup seal plays a major role on deformation resulting in the sealing force to the wall of clutch master cylinder.

복합재료 적층판의 기계적 체결부 해석 (A analysis on the mechanical joint of composite laminate)

  • 김성준;황인희
    • 한국항공운항학회지
    • /
    • 제19권4호
    • /
    • pp.12-17
    • /
    • 2011
  • This paper gives a review of finite element model for the analysis of fastening as practical points of view. Different mechanical properties of plate-fastener systems are analyzed. Calculations of the system properties are described as well as the technique of their application in model. Analysis has been performed for calculating the load distribution in multi-joint and the results are compared using the several models. The effects of fastener-hole clearance on the load distribution in multifastener joints are presented. And the stress analysis method have been reviewed for failure analysis of mechanical joint of composite laminate.

Nonlinear finite element analysis of effective CFRP bonding length and strain distribution along concrete-CFRP interface

  • Dogan, Ali Baran;Anil, Ozgur
    • Computers and Concrete
    • /
    • 제7권5호
    • /
    • pp.437-453
    • /
    • 2010
  • CFRP has been widely used for strengthening reinforced concrete members in last decade. The strain transfer mechanism from concrete face to CFRP is a key factor for rigidity, ductility, energy dissipation and failure modes of concrete members. For these reasons, determination of the effective CFRP bonding length is the most crucial step to achieve effective and economical strengthening. In this paper, generalizations are made on effective bonding length by increasing the amount of test data. For this purpose, ANSYS software is employed, and an experimentally verified nonlinear finite element model is prepared. Special contact elements are utilized along the concrete-CFRP strip interface for investigating stress distribution, load-displacement behavior, and effective bonding length. Then results are compared with the experimental results. The finite element model found consistent results with the experimental findings.