• Title/Summary/Keyword: Contact Printing

Search Result 240, Processing Time 0.026 seconds

A Study of the Boring Bar Vibration Measurement using Optical Fiber Sensor (보링바 고유진동 계측을 위한 광섬유 진동센서 연구)

  • Song, Doo-Sang;Hong, Jun-Hee;Jeong, Hwang-Young;Kang, Dae-Hwa;Kim, Byung-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.107-113
    • /
    • 2009
  • In this paper, we studied of measurement the vibration of natural frequency using optical fiber sensor. The boring bar for measurement of vibration in use optical fiber sensor has the advantage of direct measure for the frequency than accelerometer. Because it deal with output value on electrical signal of optical fiber in physical disturbance when it measures the frequency of vibration. The optical fiber sensor measured the vibration of boring bar by the gap in sensing jig while optical fiber just kept contact with boring bar. A prototype system was composed of jig part with gap and optical system part. In this paper, we found out the possibility to measurement of vibration by the gap in use optical fiber.

Study on Improvement of Kraft Paper sack Mixed with Recycled Paper for Sugars and Assorted Feeds (설탕 및 사료의 파지혼용 크라프트 지대 개선에 관한 연구)

  • Lee, Soo-Keun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.2
    • /
    • pp.38-41
    • /
    • 1999
  • This study was carried out to investigate improvement of kraft paper sack mixed with recycled paper for sugars and assorted feeds. Four Plies of kraft paper mixed with recycled paper(basis weight : $80g/m^2$) were taken place of two plies of kraft paper made from all pulp(basis weight : $98g/m^2$) and one ply of kraft paper mixed with recycled paper(basis weight : $80g/m^2$) for sugar 30kg. Three Plies of kraft paper mixed with recycled paper(basis weight : $80g/m^2$) were taken place of two plies of kraft paper made from all pulp(basis weight $98g/m^2$) for sugar 15kg and assorted feed 25kg. Physical properties, tensile strength, internal tearing strength and bursting strength, were improved by exchanging kraft paper mixed with recycled paper for kraft paper from all pulp and so kraft paper sacks made from all pulp were no damage in handling. They had so high friction coefficient that there was no danger of collapse on pallet by slipperiness in transportation and handling. And they had high printability so disappearance of printing by the contact with other paper sack in transportation was not found.

  • PDF

Direct printing of organic single crystal nanowire arrays by using Liquid-bridge-mediated nanotransfer molding

  • Oh, Hyun-S.;Baek, Jang-Mi;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.473-473
    • /
    • 2011
  • In recent years, organic thin film transistors OTFTs based on conductive-conjugated molecules have received significant attention. We report a fabrication of organic single crystal nanowires that made on Si substrates by liquid bridge-mediated nanotransfer molding (LB-nTM) with polyurethane acrylate (PUA) mold. LB-nTM is based on the direct transfer of various materials from a stamp to a substrate via a liquid bridge between them. In liquid bridge-transfer process, the liquid layer serves as an adhesion layer to provide good conformal contact and form covalent bonding between the organic single crystal nanowire and the Si substrate. Pentacene is the most promising organic semiconductors. However pentacene has insolubility in organic solvents so pentacene OTFTs can be achieved with vacuum evaporation system. However 6, 13-bis (triisopropylsilylethynyl) (TIPS) pentacene has high solubility in organic solvent that reported by Anthony et al. Furthermore, the substituted rings in TIPS-pentacene interrupt the herringbone packing, which leads to cofacial ${\pi}-{\pi}$ stacking. The patterned TIPS-Pentacene single crystal nanowires have been investigated by Atomic force microscopy (AFM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and electrical properties.

  • PDF

Mechanical and Antibacterial Properties of Copper-added Austenitic Stainless Steel (304L) by MIM

  • Nishiyabu, Kazuaki;Masai, Yoshikaze;Ishida, Masashi;Tanaka, Shigeo
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.227-234
    • /
    • 2002
  • For the austenitic stainless steel (304L) manufactured by metal injection molding(MIM), the effects of copper content and sintering temperature on the mechanical properties, antibacterial activities, corrosion resistance, and electric resistances were investigated. The specimens were prepared by injection molding of the premixed powders of water-atomized 304 L and Cu with poly-acetyl binders. The green compacts were prepared with various copper contents from 0 to 10 wt.% Cu, which were debound thermally at 873 K for 7.2 ks in $N_2$gas atmosphere and subsequently sintered at various temperatures from 1323 K to 1623 K for 7.2 ks in Ar gas atmosphere. The relative density and tensile strength of the sintered compacts showed the minimum values at 5 and 8 wt.% Cu, respectively. Both the relative density and the tensile strength of the specimen with 10 wt.% Cu sintered at 1373 K showed the highest values, higher than those of copper-free specimen. Antibacterial activities investigated by the plastic film contact printing method for bacilli and the quantitative analysis of copper ion dissolved in water increased as the increase of the copper content to stainless steels. It was also verified by the measurement of pitting potential that the copper addition in 304 L could improve the corrosion resistance. Furthermore the electric conductivity increased with the increase of copper content.

Effect of Electrode Formation Process using E-beam Evaporation on Crystalline Silicon Solar Cell (E-Beam evaporation을 이용한 전극 형성 공정이 결정질 실리콘 태양전지에 미치는 영향 분석)

  • Choi, Dongjin;Park, Se Jin;Shin, Seung Hyun;Lee, Changhyun;Bae, Soohyun;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 2019
  • Most high-efficiency n-type silicon solar cells are based on the high quality surface passivation and ohmic contact between the emitter and the metal. Currently, various metalization methods such as screen printing using metal paste and physical vapor deposition are being used in forming electrodes of n-type silicon solar cell. In this paper, we analyzed the degradation factors induced by the front electrode formation process using e-beam evaporation of double passivation structure of p-type emitter and $Al_2O_3/SiN_x$ for high efficiency solar cell using n-type bulk silicon. In order to confirm the cause of the degradation, the passivation characteristics of each electrode region were determined through a quasi-steady-state photo-conductance (QSSPC).

Electrode Design for Electrode Formation and PV Module Integration Development (전극형성과 태양전지 모듈 일체화 기술 개발에 적용되는 태양전지 전극 설계 기술)

  • Park, Jinjoo;Jeon, Youngwoo;Jang, Minkyu;Kim, Minje;Lim, Donggun
    • Current Photovoltaic Research
    • /
    • v.9 no.4
    • /
    • pp.123-127
    • /
    • 2021
  • This study was on electrode design for the realization of a solar cell that combines electrode formation and module integration process to overcome printing limitations. We used the passivated emitter rear contact (PERC) solar cell. Wafer size was 156.75 mm ×156.75 mm. The fabricated cell results showed that the open-circuit voltage of 649 mV, short-circuit current density of 36.15 mA/cm2, fill factor of 68.5%, and efficiency of 16.06% with electrode conditions the 24BBs with the width 190 ㎛ and 90FBs with the width 45 ㎛. For improving efficiency, the characteristics of the solar cell were checked according to the change in the number of BBs and FBs and the change in line fine width. It is confirmed that the efficiency of the solar cell will be improved by increasing the number of FBs from 90 to 120, and increasing the line width of the FBs by about 10 ㎛ compared to the manufacturing solar cells.

Evaluation for Adhesion Characteristics of UV-curable Bump Shape Stamp for Transfer Process (전사공정을 위한 UV 경화성 범프형 스탬프의 점착특성 평가)

  • Jeong, Yeon-Woo;Kim, Kyung-Shik;Lee, Chung-Woo;Lee, Jae-Hak;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.75-81
    • /
    • 2016
  • Future electronics such as electronic paper and foldable cellphone are required to be flexible and transparent and should have a high performance. In order to fabricate the flexible electronics using flexibility transfer process, techniques for transferring various devices from rigid substrate onto flexible substrate by elastomeric stamp, have been developed. Adhesion between the elastomeric stamp and various devices is crucial for successful transfer process. The adhesion can be controlled by the thickness of the stamp, separation velocity, contact load, and stamp surface treatment. In this study, we fabricated the bump shape stamp consisting of a UV-curable polymer and investigated the effects of curing condition, separation velocity, and contact load on the adhesion characteristics of bumps. The bumps with hemispherical shape were fabricated using a dispensing process, which is one of the ink-jet printing techniques. Curing conditions of the bumps were controlled by the amount of UV irradiation energy. The adhesion characteristics of bumps are evaluated by adhesion test. The results show that the pull-off forces of bumps were increased and decreased as UV irradiation energy increased. For UV irradiation energies of 300 and 500 mJ/cm2, the pull-off forces were increased as the separation velocity increased. The pull-off forces also increased with the increase of contact load. In the case of UV irradiation energy above 600 mJ/cm2, however, the pull-off forces were not changed. Therefore, we believe that the bump shape stamp can be applied to roll-based transfer process and selective transfer process as an elastomeric stamp.

Modern Paper Quality Control

  • Olavi Komppa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.06a
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

A Study on Ceramic Restoration Methods with Full Color 3D Printing (풀 컬러 3D 프린팅을 이용한 도자기 복원 방법 연구)

  • Shin, Woo Cheol;Wi, Koang Chul
    • Journal of Conservation Science
    • /
    • v.36 no.5
    • /
    • pp.306-314
    • /
    • 2020
  • The use of synthetic resins in ceramic restoration poses several challenges, including aging and potential damage to artifacts, which has raised the need to investigate new materials and restoration methods. This study set out to incorporate full color 3D printing into the 3D digital technology-based restoration method, an emerging approach currently being researched, and to print out missing parts with color information. After examining material physical properties with an experiment, the investigator printed out missing parts from a white porcelain vessel and grayish-blue-powdered celadon plate and compared them in chromaticity and brilliance. The experimental results show that the outputs had comparable tensile strength to the original restoration materials, whereas the recorded compressive strength was approximately 1.4~2 times higher than that of the original restoration materials. According to the NIST table of color difference values, the white porcelain vessel was visible at ΔE*ab 1.55, and the grayish-blue-powdered celadon plate was perceivable at 3.34. Even though it was impossible to express the colors accurately owing to printer limitations, this non-contact approach reduced the possibility of damage to the minimum. In conclusion, it can be applied to objects with a high chance of damage or generate display effects through purposeful color differentiation in missing parts.

Fabrication of 3D Paper-based Analytical Device Using Double-Sided Imprinting Method for Metal Ion Detection (양면 인쇄법을 이용한 중금속 검출용 3D 종이 기반 분석장치 제작)

  • Jinsol, Choi;Heon-Ho, Jeong
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.323-330
    • /
    • 2022
  • Microfluidic paper-based analytical devices (μPADs) have recently been in the spotlight for their applicability in point-of-care diagnostics and environmental material detection. This study presents a double-sided printing method for fabricating 3D-μPADs, providing simple and cost effective metal ion detection. The design of the 3D-μPAD was made into an acryl stamp by laser cutting and then coating it with a thin layer of PDMS using the spin-coating method. This fabricated stamp was used to form the 3D structure of the hydrophobic barrier through a double-sided contact printing method. The fabrication of the 3D hydrophobic barrier within a single sheet was optimized by controlling the spin-coating rate, reagent ratio and contacting time. The optimal conditions were found by analyzing the area change of the PDMS hydrophobic barrier and hydrophilic channel using ink with chromatography paper. Using the fabricated 3D-μPAD under optimized conditions, Ni2+, Cu2+, Hg2+, and pH were detected at different concentrations and displayed with color intensity in grayscale for quantitative analysis using ImageJ. This study demonstrated that a 3D-μPAD biosensor can be applied to detect metal ions without special analysis equipment. This 3D-μPAD provides a highly portable and rapid on-site monitoring platform for detecting multiple heavy metal ions with extremely high repeatability, which is useful for resource-limited areas and developing countries.