• 제목/요약/키워드: Contact Pressure Sensor

검색결과 94건 처리시간 0.03초

CMP 후 세정용 PVA 브러쉬의 접촉압력 분포 측정 (Contact Pressure Distribution Measurement of PVA Brush for Post CMP Cleaning)

  • 유선중;김덕중
    • 반도체디스플레이기술학회지
    • /
    • 제15권4호
    • /
    • pp.73-78
    • /
    • 2016
  • Contact pressure distribution between PVA brush and semiconductor wafer was measured by developing a test setup which could simulates the post CMP cleaning process. The test set-up used thin film type pressure sensor which could measure the pressure distribution of contact area with the resolution of $15.5ea/cm^2$. As the experimental results, it was verified that there had been severe contact pressure non-uniformity along the axis of the brush and between the adjacent projections on the brush's surface. These results should be considered when developing post CMP cleaning stage or designing the PVA brush.

접촉력 및 미끄러짐을 감지 가능한 촉각 센서의 개발 (Development of Tactile Sensor for Detecting Contact Force and Slip)

  • 최병준;강성철;최혁렬
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.364-372
    • /
    • 2006
  • In this paper, we present a finger tip tactile sensor which can detect contact normal force as well as slip. The sensor is made up of two different materials, such as polyvinylidene fluoride (PVDF) known as piezoelectric polymer, and pressure variable resistor ink. In order to detect slip on the surface of the object, two PVDF strips are arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, a tactile sensing system is developed, which includes miniaturized charge amplifier to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.

3D 프린팅 방식 유연 촉각센서의 접촉력 측정 알고리즘 개발 (Development of Contact Force Measurement Algorithm for a 3D Printing-type Flexible Tactile Sensor)

  • 정경화;이주경;이석;이경창
    • 제어로봇시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.583-588
    • /
    • 2015
  • Flexible tactile sensors can provide valuable feedback to intelligent robots regarding the environment around them. This is especially important when robots such as, service robots share a workspace with humans. This paper presents a contact force measurement algorithm of a flexible tactile sensor. This sensor is manufactured by a direct-writing technique, which is one 3D printing method, using multi-walled carbon nano-tubes. An analog signal processing circuit has been designed and implemented to reduce noise contained in the sensor output. In addition, a digital version of the Butterworth filter was implemented by software running on a microcontroller. Through various experiments, characteristics of the sensor system have been identified. Based on three traits, an algorithm to detect the contact and measure the contact force has been developed. The entire system showed a promising prospect to detect the contact over a large and curved area.

PVDF를 이용한 유연 촉각센서의 제작 및 특성해석 (Fabrication and Characteristic Analysis of a Flexible Tactile Sensor Using PVDF)

  • 윤명종;권대규;유기호;이성철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.390-390
    • /
    • 2000
  • This research is the development of a skin-type tactile sensor for service robot using PVDF film for the detection of the contact state. The Prototype of the tactile sensor which has 8$\times$8 taxels was fabricated using PVDF film In the fabrication procedure of the sensor, the electrode patterns and common electrode of the thin conductive tape were attached to the both side of the 28 micro meter thickness PVDF film using conductive adhesive. The sensor was covered with polyester film for insulation and attached to the rubber base for making stable structure. The signals of a contact pressure to the tactile sensor were sensed and processed in the DSP system in which the signals were digitized and filtered. Finally, the signals were integrated for taking the force profile. The processed signals of the output of the sensor were visualized in PC, the shape and force distribution of the contact object were obtained. The reasonable performance for the detection of contact state was verified through the experiment.

  • PDF

고온 롤 라미네이터용 멤브레인 구조 필름형 압력 센서 개발 (Development of Membrane Film Pressure Sensor for Hot Roll Laminator)

  • 김도연;이태경;강필식
    • 한국산업융합학회 논문집
    • /
    • 제23권6_2호
    • /
    • pp.1059-1065
    • /
    • 2020
  • Demand for pressure sensors is increasing in various fields such as machinery, healthcare and medical care. A recent study is being conducted to create sensors that are more sensitive and have longer linear sections based on measurement principles. In this paper, a film-type sensor with a membrane structure was developed to measure the pressure distributed in the axial direction of a hot roll laminator. Performance of sensors was evaluated by resistance and durability according to membrane diameter. The resistance of the membrane sensor varies according to the contact state and contact area of the electrode. Therefore, the membrane diameter selection is important. Experiments showed the most pronounced variation in resistance under pressure at 8 mm in diameter of membrane. Reliability evaluation of sensors was carried out at room temperature and high temperature. The pressure on the sensor was pressurized 1000 times to measure the initial resistance and the resistance after the evaluation to analyze the change. Sensors showed stable results with low resistance changes of 5.15% and 6.27%, respectively. A large area sensor manufactured using the developed sensor also showed reliable results.

PVDF를 이용한 유연 촉각센서의 제작과 특성 평가 (Fabrication and Characteristic Evaluation of a Flexible Tactile Sensor Using PVDF)

  • 유기호;윤명종;권대규;이성철
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.161-166
    • /
    • 2001
  • The prototype of a tactile sensor with $4\times 4$ taxels using PVDF was fabricated. The electrode patterns of the thin Cu tape are attached to the 28${\mu}{\textrm}{m}$ thickness PVDF using conductive adhesive and covering the sensor using polyester film for insulation. The structure of the sensor is flexible and the fabrication procedure is easy relatively. Also the output characteristics of the sensor was nearly linear with 8% deviation. The signals of a contact pressure to the tactile sensor are sensed and processed through A/D converter, DSP system and personal computer. The reasonable performance for the detection of contact shape and force distribution was verified through the experiment.

  • PDF

맥 센서 어레이(array)의 실리콘(silicone) 코팅 두께에 따른 센서 간 간섭효과 (Interference Effects on the Thickness of a Pulse Pressure Sensor Array Coated with Silicone)

  • 전민호;전영주;김영민
    • 센서학회지
    • /
    • 제25권1호
    • /
    • pp.35-40
    • /
    • 2016
  • Pulse diagnosis is one of the representative diagnostic methods in Oriental medicine. In this study, a pulse pressure sensor array coated with silicone, which includes 6 piezo-resistive sensors and 1 thermistor, is fabricated for pulse measurement. It is necessary to coat the pulse sensor array with silicone to avoid the fracture or damage of pressure sensors when the sensor is in contact with the skin and a constant pressure is applied. However, the silicone coating on the pulse sensor array can cause signal interference among the sensors in the pulse sensor array. The interference number (IN), a calculation for expressing the degree of interference among channels, is changed according to the silicone thickness on the pulse sensor array. The IN is increased by a thick silicone coating, but the fabrication error, an important index for the mass production of the sensor array, is reduced by the thickness of the silicone coating. We propose that the thickness of the silicone on the pulse sensor array is an important consideration for the performance of the fabricated sensor and manufacturing repeatability.

근접 센서를 이용한 로봇 손의 파지 충격 개선 (Grasping Impact-Improvement of Robot Hands using Proximate Sensor)

  • 홍예선;진성무
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.42-48
    • /
    • 1999
  • A control method for a robot hand grasping a object in a partially unknown environment will be proposed, where a proximate sensor detecting the distance between the fingertip and object was used. Particularly, the finger joints were driven servo-pneumatically in this study. Based on the proximate sensor signal the finger motion controller could plan the grasping process divided in three phases ; fast aproach, slow transitional contact and contact force control. That is, the fingertip approached to the object with full speed, until the output signal of the proximate sensor began to change. Within the perating range of the proximate sensor, the finger joint was moved by a state-variable feedback position controller in order to obtain a smooth contact with the object. The contact force of fingertip was then controlled using the blocked-line pressure sensitivity of the flow control servovalve for finger joint control. In this way, the grasping impact could be reduced without reducing the object approaching speed. The performance of the proposed grasping method was experimentally compared with that of a open loop-controlled one.

  • PDF

분포형 유연 촉각센서 시스템의 개발 (Development of a Distributed Flexible Tactile Sensor System)

  • 유기호;윤명조;정구영;권대규;이성철
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.212-218
    • /
    • 2002
  • This research is the development of a distributed tactile sensor using PVDF film far the detection of the contact state. The prototype of the tactile sensor with 8$\times$8 taxels was fabricated using PVDF film and flexible circuitry. In the fabrication procedure, the electrode and the common electrode patterns are attached to the both side of the 28${\mu}m$ thickness PVDF film. The sensor is covered with polyester film for insulation. The signals of a contact pressure to the tactile sensor are sensed and processed in the DSP system in which the signals are digitalized and filtered. And the signals are integrated for taking the force profile. The processed signals of the output of the sensor are visualized to take the shape and force distribution of the contact object in personal computer. The usefulness of the sensor system is verified through the sensing examples.

손목 피부 온도에 의한 맥센서 어레이(array)의 신호 변동 및 보정 (Signal Change and Compensation of Pulse Pressure Sensor Array Due to Wrist Surface Temperature)

  • 전민호;전영주;김영민
    • 센서학회지
    • /
    • 제26권2호
    • /
    • pp.141-147
    • /
    • 2017
  • A pressure sensor in pulse measurement system is a core component for precisely measuring the pulse waveform of radial artery. A pulse sensor signal that measures the pulse wave in contact with the skin is affected by the temperature difference between the ambient temperature and skin surface. In this study, we found experimentally that the signal changes of the pressure sensors and a temperature sensor were caused by the temperature of the wrist surface while the pressure sensor was contacted on the skin surface for measuring pulse wave. To observe the signal change of the pulse sensor caused by temperature increase on sensor surface, Peltier device that can be kept at a set temperature was used. As the temperature of Peltier device was kept at $35^{\circ}C$ (the maximum wrist temperature), the device was put on the pulse sensor surface. The temperature and pressure signals were obtained simultaneously from a temperature sensor and six pressure sensors embedded in the pulse sensor. As a result of signal analysis, the sensor pressure was decreased during temperature increase of pulse sensor surface. In addition, the signal difference ratio of pressure and temperature sensors with respect to thickness of cover layer in pulse sensor was increased exponentially. Therefore, the signal of pressure sensor was modified by the compensation equation derived by the temperature sensor signal. We suggested that the thickness of cover layer in pulse sensor should be designed considering the skin surface temperature.