• Title/Summary/Keyword: Contact Deformation

Search Result 767, Processing Time 0.024 seconds

Particle Behavior and Deformation During Compaction of Al Powder Using MPFEM (다입자유한요소법을 이용한 Al분말 압축공정에서 입자의 거동과 변형에 관한 연구)

  • Lee, Kyung-Hun;Lee, Jung-Min;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.383-390
    • /
    • 2010
  • This paper describes multiparticle finite element model (MPFEM)-based powder compaction simulations performed to demonstrate the densification of compacted aluminum powders. A 2D MPFEM was used to explore the densification of a collection of aluminum particles with different average particle sizes under various ram speeds. Individual particles are discretized using a finite element mesh for a detailed description of contact mechanics. Porous aluminum powders with average particle sizes of $20\;{\mu}m$ and $3\;{\mu}m$ were compressed uniaxially at ram speeds of 5, 15, 30, and 60 mm/min by using an MTS servo-hydraulic tester. The slow ram speed was of great advantage to powder densification in low compaction force due to sufficient particle rearrangement. Owing to a decrease in the average particle size of aluminum, the compaction force increased.

Multi Point Press Stretch Forming System Applied to Curved Hull Plate of Aluminum Ship (알루미늄 선박의 외판 가공을 위한 인장성형 시스템 연구)

  • Bae, Chul-Nam;Hwang, Se-Yun;Lee, Jang-Hyun;Jeong, Uh-Cheul;Kim, Kwang-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.3
    • /
    • pp.188-197
    • /
    • 2012
  • Recently, aluminum ships are constructed more than ever because of the environmental pollution generated by FRP (Fiber Reinforced Plastic) ships. In particular, FRP ships have been replaced by the Aluminum ships. The forming process of the curved aluminum plate has been performed only by labor works without systematic technique. Therefore, it is difficult to construct the aluminum ship that the design satisfies both required propulsion performance and hull design. Present study introduces a MPSF (Multi Point Stretching Forming) that is a flexible manufacturing technique to form large sheet panels of doubly curvature. The hull pieces are stretch-formed over the MPSD (multi-point stretching die) generated by the punch element matrix. In this study, MPSF is applied to deform the doubly curved surfaces of aluminum ship. The forming system including FEA (finite element analysis) of the processes for stretching the plate were carried out by static implicit analysis is suggested. Residual deformation of the surface is modeled by an elasto-plastic contact phenomena while the forming process is simulated by FEA. Finally, the proposed system is also validated, comparing the deformed shape by MPSF with that of object surfaces.

Numerical Analysis of the Initiation and Development of Corrugation on a Gravel Road (수치해석적 기법을 활용한 골재 도로의 콜루게이션 발생 및 진전 분석)

  • Yun, Taeyoung;Chung, Taeil;Shin, Hyu-Soung
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.9-18
    • /
    • 2018
  • PURPOSES : In this research, the initiation and development of corrugation on a gravel road with certain wheel and boundary conditions were evaluated using a coupled discrete-element method (DEM) with multibody dynamics (MBD). METHODS : In this study, 665,534 particles with a 4-mm diameter were generated and compacted to build a circular roadbed track, with a depth and width of 42 mm and 50 mm, respectively. A single wheel with a 100-mm diameter, 40-mm width, and 0.157-kg mass was considered for the track. The single wheel was set to run slowly on the track with a speed of 2.5 rad/s so that the corrugation was gradually initiated and developed without losing contact between the wheel and the roadbed. Then, the shape of the track surface was monitored, and the movement of the particles in the roadbed was tracked at certain wheel-pass numbers to evaluate the overall corrugation initiation and development mechanism. RESULTS : Two types of corrugation, long wave-length and short wave-length, were observed in the circular track. It seems that the long wave-length corrugation was developed by the longitudinal movement of surface particles in the entire track, while the short wave-length corrugation was developed by shear deformation in a local section. Properties such as particle coefficients, track bulk density, and wheel mass, have significant effects on the initiation and development of long-wave corrugation. CONCLUSIONS : It was concluded that the coupled numerical method applied in this research could be effectively used to simulate the corrugation of a gravel road and to understand the mechanism that initiates and develops corrugation. To derive a comprehensive conclusion for the corrugation development under various conditions, the driver's acceleration and deceleration with various particle gradations and wheel-configuration models should be considered in the simulation.

Distortion Analysis for Outer Ring of Automotive Wheel Bearing (자동차용 휠 베어링 외륜의 변형 해석)

  • Lee, Seung Pyo;Kim, Bong Chul;Lee, In Ha;Cho, Young Geol;Kim, Yong Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1613-1618
    • /
    • 2012
  • The wheel bearing is one of the important parts in a vehicle for translating power and bearing weight. When it is mounted on the knuckle by using bolts, the distortion of the outer ring including the seal mounting point and raceway occurs. In this study, a numerical analysis was performed to analyze the distortion of the outer ring by using a finite element method. The commercial software MSC.MARC was used for this purpose. Elastoplastic and contact analysis were carried out to compute the clamping behavior of the outer ring, bolts, and knuckle. Because the concavity on the flange of the outer ring affects the deformation, its effect was considered. To verify the reliability of this study, the roundness of the outer ring was measured. The experimental results were comparatively in agreement with the computational results.

A Study on the Stress Wave Propagation of Composite Laminate Subjected to Low-Velocity Impact (저속 충격을 받는 적층 복합재의 응력파 전파에 관한 연구)

  • 안국찬;김문생;김규남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 1989
  • The impact stress and wave propagation of graphite/epoxy and glass/epoxy laminates subjected to the transverse low-velocity impact of steel balls are investigated theoretically. A plate finite element model based on Whitney and Pagano's theory for the analysis of heterogeneous and anisotropic plates taking into account of the transverse shear deformation is used for the theoretical investigation. This model is in conjuction with static contact laws. The basic element is a four-node quadrilateral with the five degrees-of-freedom per node. The reduced integration technique is used for shear locking associated with low-order function in application to thin plates. These two materials are composed of [0.deg./45.deg./0.deg./-45.deg./0.deg.]$_{2S}$ and [90.deg./45.deg./90.deg./-45.deg./90.deg.]$_{2S}$ stacking sequences and have clamped-clamped boundary conditions. Finally, the present results are compared with an existing solution and wave propagation theory and then impact stress and wave propagation phenomena are investigated.gated.

Effect of the Position of Azobenzene Moiety on the Light-Driven Anisotropic Actuating Behavior of Polyvinylalcohol Polymer Blend Films (아조벤젠 분자의 사슬 내 위치에 따른 고분자 블렌드 박막의 비등방성 광 변형에 관한 연구)

  • Kim, Hyong-Jun
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.65-70
    • /
    • 2012
  • Structural changing materials which can induce the physical deformation of materials are interesting research topics with various potential applications. Particularly, light among many driving mechanisms is a non-contact energy source, hence the light-responsive system can be used where non-destructive, local irradiation, and remote control is needed. Here, a mainchain azobenzene polymer is synthesized and its physical and optical properties are observed and compared to that of a polymer having a light-responsive azobenzene moiety on its side chain. Further dispersion onto polyvinylalcohol hydrogel is made and its dual stability and actuation are observed upon UV-visible light irradiation. Extended azobenzene polymer blend films show an anisotropic light-actuation with non-polarized UV light at room temperature. This physical shape change is quite reversible and occurs at lower temperature than that of any other reported systems including liquid crystalline elastomers. It is successfully demonstrated that the simple physical azobenzene/polymer blending has a very good actuation compared to that of LCEs which need an elaborate chemical design and it can be further used in the areas requiring a dimensional shape change.

Bar Temperature Analysis of a Hot Rolling Process. (열간 압연공정의 강판 온도 분포 해석)

  • 백기남;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.4
    • /
    • pp.307-315
    • /
    • 1989
  • In this paper, we have analyzed the temperature variation trend of a slab on between the process of reheating furnace and the termination of roughing mill process during hot rolling process. 1) cooling by radiation and convection current in the air, 2) plastic deformation heat, 3) cooling by descaling water, 4) cooling by contact with rolling rolls and/or transmitting rolls. For the analysis, the factors have been adopted as the problems of the rolling process to be solved such that we have established an application technique in relation to the determination of boundary conditions on the slab surface. We have presented a procedure for an analysis of the cooling phenomenon treated as a problem of two-dimensional transient heat flow using finite difference equation and suggested techniques of implementing sequentialized rolling tasks in correlation with the procedure. From the result of simulation, it is shown that the difference between calculation value and measurement value is within the range of the industrial measurement error. Also, it is proved that the assumptions, conditions, and properties used in the computer simulation is appropriate by showing that the pattern of a drop in temperature at each rolling event is in accord with real circumstances.

Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1561-1580
    • /
    • 2015
  • No significant improvement has been observed on the seismic performance of the ordinary steel reinforced concrete (SRC) columns compared with the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type section steel were put forward on this background: a cross-shaped steel whose flanges are in contact with concrete cover by extending the geometry of webs, and a rotated cross-shaped steel whose webs coincide with diagonal line of the column's section. The advantages of new-type SRC columns have been proved theoretically and experimentally, while construction measures and seismic behavior remain unclear when the new-type columns are joined onto SRC beams. Seismic behavior of SRC joints with new-type section steel were experimentally investigated by testing 5 specimens subjected to low reversed cyclic loading, mainly including the failure patterns, hysteretic loops, skeleton curves, energy dissipation capacity, strength and stiffness degradation and ductility. Effects of steel shape, load angel and construction measures on seismic behavior of joints were also analyzed. The test results indicate that the new-type joints display shear failure pattern under seismic loading, and steel and concrete of core region could bear larger load and tend to be stable although the specimens are close to failure. The hysteretic curves of new-type joints are plumper whose equivalent viscous damping coefficients and ductility factors are over 0.38 and 3.2 respectively, and this illustrates the energy dissipation capacity and deformation ability of new-type SRC joints are better than that of ordinary ones with shear failure. Bearing capacity and ductility of new-type joints are superior when the diagonal cross-shaped steel is contained and beams are orthogonal to columns, and the two construction measures proposed have little effect on the seismic behavior of joints.

Optimization of a Nuclear Fuel Spacer Grid Using Considering Impact and Wear with Homology Constraints (호몰로지 조건을 이용하여 충격과 마모를 고려한 원자로 핵연료봉 지지격자의 최적설계)

  • Lee, Hyun-Ah;Kim, Chong-Ki;Song, Kee-Nam;Park, Gyung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.145-150
    • /
    • 2007
  • The spacer grid set is a component in the nuclear fuel assembly. The set supports the fuel rods saftely. Therefore, the spacer gl1d set should have sufficient strength for the external impact forces. The fretting wear occurs between the spring of the fuel rod and the spacer grid due to tile flow-induced vibration. The conceptual design of the spacer grid set is performed based on the Independence Axiom of axiomatic design. Two functional requirements are defined and corresponding design parameters are selected. The overall flow of the design is defined according to the application of axiomatic design. The design for the impact load is carried out by using nonlinear dynamic analysis to determine the length of the dimple. Topology optimization is carried out to determine a new configuration of the spring. The fretting wear is reduced by shape optimization using the homology theory. In the design to reduce the fretting wear, the deformed shape of the spring should be the same as that of the fuel rod. This condition is transformed to a function and considered as a constraint in the shape optimization process. The fretting wear is expected to be reduced due to the homology constraint. The objective function is minimizing the maximum stress to allow a slight plastic deformation. Shape optimization results are confirmed through nonlinear static analysis because the contact area becomes wider.

  • PDF

A dynamic analysis on minute particles' detachment mechanism in a cryogenic $CO_2$ cleaning process (극저온 $CO_2$ 세정과정 시 미세오염물의 탈착 메커니즘 연구)

  • Seok, Jong-Won;Lee, Seong-Hoon;Kim, Pil-Kee;Lee, Ju-Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.4
    • /
    • pp.29-33
    • /
    • 2008
  • Rapid increase of integrity for recent semiconductor industry highly demands the development of removal technology of contaminated particles in the scale of a few microns or even smaller. It is known that the surface cleaning technology using $CO_2$ snow has its own merits of high efficiency. However, the detailed removal mechanism of particles using this technology is not yet fully understood due to the lack of sophisticated research endeavors. The detachment mechanism of particles from the substrates is known to be belonged in four types; rebounding, sliding, rolling and lifting. In this study, a modeling effort is performed to explain the detachment mechanism of a contaminant particle due to the rebounding caused by the vertical collision of the $CO_2$ snow. The Hertz and Johnson-Kendall-Roberts(JKR) theories are employed to describe the contact, adhesion and deformation mechanisms of the particles on a substrate. Numerical simulations are followed for several representative cases, which provide the perspective views on the dynamic characteristics of the particles as functions of the material properties and the initial inter-particle collision velocity.

  • PDF