• Title/Summary/Keyword: Contact Deformation

Search Result 767, Processing Time 0.034 seconds

Studies on the Haustorium of Cuscuta japonica. II. The Endophyte (새삼(Cuscuta japonica)의 흡기(吸器)에 관한 연구(硏究) II. 숙주조직(宿主組織)에 침투(侵透)한 흡기(吸器))

  • Lee, C.D.;Lee, K.B.
    • Applied Microscopy
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 1985
  • The portion of Cuscuta japonica haustorium which lies internal to the host tissues, the endophyte, was examined at the ultrastructural level. The endophyte consisted of mainly small parenchymatous cells and large, slightly elongate cells at the tip. The tip cells were characterized by the presence of large and lobed nucleus, several small vacuoles, dense cytoplasm, abundant rough endoplasmic reticulum, dictyosomes, and mitochondria, and thus suggested to have a high metabolic activity. The shape, arrangement, and cytological characteristics of the parenchymatous and tip cells consisting the endophyte were very similar to those of the dividing cells and idioblasts, respectively, which appeared in the endophyte primordium of the upper haustorium. The tip cells with the thickened-apical wall were observed to grow intrusively through the host cell walls and to engulf the remnants of the degenerated host cells. In the former case intrusive growing cell was regarded to develop into the filamentous cell, the hypha. Plasmodesmata through the cell wall were not observed between host and parasite cells. Some host cells that in contact with the penetrating tip cells of the endophyte, showed the degenerating features such as a loss of cytoplasm, a beaded fashion of small vesicles, and deformation of chloroplasts.

  • PDF

Finite Element Analysis for the Behavior of the Casing of a Pulverizer Mill Planetary Gear Reducer (석탄 분쇄기용 유성감속기 케이싱의 거동에 관한 유한요소해석)

  • Seo, Ji-Hwan;Kim, Seon-Jin;Jung, Min-Hwa;Kim, Byung-Tak
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.34-39
    • /
    • 2014
  • In this study, the structural analysis and the modal analysis are conducted to investigate the stress level, the deformation characteristics and the natural modes of the casing of a planetary gear reducer for a 800kW grade pulverizer mill. The casing is subjected to the load, 2800 kN, from the lump coals in the pulverizing process. Because of the symmetry, the half portion of the reducer casing is modeled for the stress analysis. But the full model is used to find out the eigenvalues and natural modes for the modal analysis. The contact conditions are applied between the thrust pad bearing and the adjacent contacting parts. The results shows that the casing structure has the sufficient strength and stiffness to support the load under consideration. ANSYS version 15 is employed to perform the numerical study.

Lateral Compression and Dowel Bearing Property of Japanese Larch Grown in Korea (국산 낙엽송재의 횡압축과 다우얼 지압 성능)

  • Hwang, Kweonhwan;Park, Byung-Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.61-69
    • /
    • 2008
  • To examine the compression properties of structural members, the compression and bearing tests were conducted in parallel- and perpendicular-to-grain loading using domestic Japanese larch (Larix kaempferi (Lamb.) Carriere). Compression (bearing) properties with the length of a specimen and the contact length of the bearing plate were investigated, and deformations at each specimen length from the point of bearing force were measured to evaluate the effective end distance tabulated in the present practice (Korean Building Code). Compression (bearing) properties varied with the size of the bearing plate, and the end distance for dowel-type fastener taken into consideration of the specimen's deformation, for the safe design, should be applied with over 7 D.

Surface Texturing for Low Friction Mechanical Components

  • Iqbal, K. Y. Mohd;Segu, D. Z.;Pyung, H.;Kim, J. H.;Kim, S. S.
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.287-293
    • /
    • 2015
  • Laser surface texturing (LST), a surface engineering modification, has been considered as one of the new processes used to improve tribological characteristics of materials by creating artificially patterned microstructure on the contact surface of mechanical components. In LST technology, the laser is optimized to obtain or manufacture the dimples with maximum precision. The micro-dimples reduce the coefficients of friction and also improve the wear resistance of materials. This study investigates the effect of dimple density is investigated. For this purpose, a ball-on-disc type tester is used with AISI 52100 bearing steel as the test material. Discs are textured with a 5% and 10% dimple density. Experimental work is performed with normal loads of 5 N, 10 N, and 15 N under a fixed speed of 150 rpm at room temperature. The effect of the textured surface is compared to that of the untextured one. Experimental results show that the textured surface yields lower friction coefficients compared to those of untextured surfaces. Specifically, the 10% dimple density textured surface shows better friction reduction behavior than the 5% dimple density textured sample, and has an 18% improvement in friction reduction compared with the untextured samples. Microscopic observation using a scanning electron microscope (SEM) shows that the major friction mechanisms of the AISI 52100 bearing steel are adhesion, plastic deformation, and ploughing.

EHL Analysis of Ball Bearing for Rough Surface With the FlowFactor (FlowFactor를 이용한 볼베어링의 탄성유체윤활해석)

  • Lee, Byung-Wook;Moon, Seok-Man;Kim, Tae-Wan;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.326-331
    • /
    • 2011
  • The purpose of this paper is to analyze and discuss the effects of surface roughness by comparing the elastohydrodynamic lubrication(EHL) analysis of smooth surface and rough surface as the ball bearing. In order to do this, The average flow model is adapted for the interaction of the flow rheology of lubricant and surface roughness. The average Reynolds equation and the related flow factor which describes the coupled effects of surface roughness and flow rheology, the viscosity-pressure and density-pressure relations equations, the elastic deformation equation, and the force balance equation are solved simultaneously. The results show that effects of surface roughness on the film thickness and pressre distribution should be considered especially in EHL contact problems.

Predictive Study of Hysteretic Rubber Friction Based on Multiscale Analysis (멀티스케일 해석을 통한 히스테리시스 고무 마찰 예측 연구)

  • Nam, Seungkuk;Oh, Yumrak;Jeon, Seonghee
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.378-383
    • /
    • 2014
  • This study predicts the of the hysteretic friction of a rubber block sliding on an SMA asphalt road. The friction of filled rubber on a rough surface is primarily determined by two elements:the viscoelasticity of the rubber and the multi-scale perspective asperities of the road. The surface asperities of the substrate exert osillating forces on the rubber surface leading to energy dissipation via the internal friction of the rubber when rubber slides on a hard and rough substrate. This study defines the power spectra at different length scales by using a high-resolution surface profilometer, and uses rubber and road surface samples to conduct friction tests. I consider in detail the case when the substrate surface has a self affine fractal structure. The theory developed by Persson is applied to describe these tests through comparison with the hysteretic friction coefficient relevant to the energy dissipation of the viscoelastic rubber attributable to cyclic deformation. The results showed differences in the absolute values of predicted and measured friction, but with high correlation between these values. Hence, the friction prediction model is an appropriate tool for separating the effects of each factor. Therefore, this model will contribute to clearer understanding of the fundamental principles of rubber friction.

A Cooling Method which Reduces the Tangential Tensile Stresses on a Work Roll Surface during Hot Slab Rolling (열연 슬라브 압연에서 워크롤 표면 원주방향 인장응력 감소를 위한 냉각 방법)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.58-66
    • /
    • 2012
  • The work roll surface temperature rises and falls repetitively during hot slab rolling because the work roll surface is cooled continuously by water. This study focused on Std. No. 7 to determine a cooling method which significantly reduces the tangential tensile stresses on the work roll surface of the hot slab mill at Hyundai Steel Co. in Korea. A series of finite element analyses were performed to compute the temperature distribution and the tensile stresses in the circumferential direction of the work roll. The virtual slab model was used to reduce the run time considerably by assigning a high temperature to the virtual slab. Except for the heat generated by plastic deformation, this is equivalent to the hot rolling condition that a high temperature slab (material) would experience when in contact with the work rolls. Results showed that when the virtual slab model was coupled with FE analysis, the run time was found to be reduced from 2000 hours to 70 hours. When the work roll surface cooled with a certain on-off patter of water spray, the magnitude of the tangential stresses on the work rolls were decreased by 54.1%, in comparison with those cooled by continuous water spraying. Savings of up to 83.3% in water usage are possible if the proposed water cooling method is adopted.

An Investigation of Welding Variables on Resistance Upset Welding for End Capping of HWR Fuel Elements (중수로 핵연료 봉단마개의 저항업셋 용접을 위한 용접변수)

  • 이정원;박춘호;고진현;정성훈;정문규
    • Journal of Welding and Joining
    • /
    • v.7 no.2
    • /
    • pp.60-69
    • /
    • 1989
  • The present study was aimed at investigating the effect of welding parameters such as welding current, electrode force(or squeeze force) and parts cleaning on the sound weld, and establishing the most reliable weld conditions for HWP(Heavy Water Reactor) fuel end capping with the resistance upset butt welding. Major results obtained are as follows. 1. The amount of sound weld was increased with increasing weld current(5.0-11KA) because the activated diffusion with increasing heat generation played an important role in eliminating the porosity and weld line in the weld interface. 2. It was found that weld current was not significantly influenced by the electrode force although the increase of it caused a slight increase of weld current and upset deformation. 3. Acetone rinsing before drying for the Zircaloy-4 end cap cleaning produced the reliable sound weld because it would remove the remaining solvent and surface films, and provided the uniform contact between the end cap and the tube. 4. The optimum welding conditions for fuel end capping by a resistance upset hytt welding are obtained as follows. weld current: 10-11KA, electrode force: 62-90KPa parts cleaning: vapor degreasing.rarw.water, acetone rinsing.rarw.drying.

  • PDF

Vertical vibrations of a bridge based on the traffic-pavement-bridge coupled system

  • Yin, Xinfeng;Liu, Yang;Kong, Bo
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.457-468
    • /
    • 2017
  • When studying the vibration of a suspension bridge based on the traffic-bridge coupled system, most researchers ignored the contribution of the pavement response. For example, the pavement was simplified as a rigid base and the deformation of pavement was ignored. However, the action of deck pavement on the vibration of vehicles or bridges should not be neglected. This study is mainly focused on establishing a new methodology fully considering the effects of bridge deck pavement, probabilistic traffic flows, and varied road roughness conditions. The bridge deck pavement was modeled as a boundless Euler-Bernoulli beam supported on the Kelvin model; the typical traffic flows were simulated by the improved Cellular Automaton (CA) traffic flow model; and the traffic-pavement-bridge coupled equations were established by combining the equations of motion of the vehicles, pavement, and bridge using the displacement and interaction force relationship at the contact locations. The numerical studies show that the proposed method can more rationally simulate the effect of the pavement on the vibrations of bridge and vehicles.

Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.649-661
    • /
    • 2017
  • This paper is motivated by the lack of studies in the technical literature concerning to the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) plate has smooth variation of CNT fraction based on the power-law distribution in the thickness direction, and the material properties are also estimated by the extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Parametric studies are carried out to highlight the influence of CNTs volume fraction, waviness and aspect ratio, boundary conditions and elastic foundation on vibrational behavior of FG-CNT thick sectorial plates. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. For an overall comprehension on 3-D vibration of annular sector plates, some mode shape contour plots are reported in this research work.