• Title/Summary/Keyword: Contact Center

Search Result 1,812, Processing Time 0.028 seconds

ROLL CENTER ANALYSIS OF A HALF-CAR MODEL USING POLE FOR SMALL DISPLACEMENT

  • Lee, J.K.;Shim, J.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.833-839
    • /
    • 2006
  • In this paper, roll behavior of three planar half car models are compared. The first model is a simple model whose contact point between a wheel and the ground is assumed to be fixed with a revolute joint. The second model is a modified model of the fIrst model, whose wheel tread width can vary. In this model, the instant center of a wheel with respect to the ground, which is crucial to find the roll center, is assumed to be at the contact point of a wheel and the ground. The last model uses the pole of a wheel with respect to the ground for small displacement as the instant center of a wheel with respect to the ground. Loci of the center of gravity point, the fixed and the moving centrodes which are traces of roll center position in the ground and the body frame respectively, wheel contact points, and instant centers of a wheel with respect to the ground are calculated.

On the Contact Behavior Analysis and New Design of High Pressure Piston Seals

  • Kim, Chung-Kyun;Cho, Seung-Hyun;Kim, Sung-Won;Ko, Young-Jin;Kim, Jong-Soo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.117-119
    • /
    • 2002
  • In this paper, the geometry effectiveness and contact modes as functions of real contact length on a cap ring have been analyzed for high pressure sealing mechanism in reciprocating actuator. The reaction force and elastic strain energy density are very important parameters for analyzing the sealing performance of an ACGT ring seal. For the high pressure of 800bar and the maximum speed of 3m/s, the main piston is reciprocating along the linear line against the cylinder wall. The computed results indicate that the length ratio of a cap ring is more influential design parameter compared to that of the tribological contact mode. Thus, this paper recommends the discrete contact area rather than a conventional flat contact model. Especially, the sealing capacity is more improved when the length ratio of a cap ring is below 0.625.

  • PDF

Contact resistance characteristics of 2G HTS coils with metal insulation

  • Sohn, M.H.;Ha, H.;Kim, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.26-30
    • /
    • 2018
  • The turn-to-turn contact resistance of 2G high temperature superconducting (HTS) coils with metal insulation (MI) is closely related to the stability of the coils, current charging rate and delay time [1]. MI coils were fabricated using five kinds of metal tapes such as aluminum (Al) tape, brass tape, stainless steel (SS) tape, copper (Cu)-plated tape and one-sided Cu-plated SS tape. The turn-to-turn contact surface resistances of co-winding model coils using Al tape, brass tape, and SS tape were 342.6, 343.6 and $724.8{\mu}{\Omega}{\cdot}cm^2$, respectively. The turn-to-turn contact resistance of the model coil using the one-sided Cu-plated SS tape was $ 248.8{\mu}{\Omega}{\cdot}cm^2$, which was lower than that of Al and brass tape. Al or brass tape can be used to reduce contact resistance and improve the stability of the coil. Considering strength, SS tape is recommended. For strength and low contact resistance, SS tape with copper plating on one side can be used.

A New Method for Lateral Force Calibration in Atomic Force Microscope (원자현미경(AFM)에서 마찰력 측정을 위한 새로운 보정 기술 연구)

  • Yoon Eui-Sung;Kim Hong Joon;Wang Fei;Kong Hosung
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.221-226
    • /
    • 2005
  • A new calibration method for exact measurement of friction force in atomic force microscope (AFM) is presented. A new conversion factor involves a contact factor affected by tip, cantilever and contact stiffness. Especially the effect of contact stiffness on the conversion factor between lateral force and lateral signal is considered. Conventional conversion factor and a new modified conversion factor were experimentally compared. Results showed that a new calibration method could minimize the effect of normal load on friction force and improve the conventional method. A new method could be applied to the specimens with different physical properties.

A Study on the Arc Characteristics of Axial Magnetic Field Type Electrode for Vacuum interrupter by Desing Parameters (설계변수에 따른 진공인터럽터용 종자계방식 전극의 아크특성에 관한 연구)

  • Kim, S.I.;Park, H.T.;Ahn, H.I.;Seo, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.672-674
    • /
    • 2001
  • Axial magnetic field(AMF) type electrode can increase the interrupting capability of vacuum interrupters. But, this interrupting capability vary with design parameters such as shape of electrode, slits of contact, material of contact and so on. In this paper, shown arc characteristics of unipolar axial magnetic field type electrode for vacuum interrupter by design parameters such as shape of contact slits and diameter of contact. And, confirmed vacuum arc configuration by individual design parameter using high speed camera.

  • PDF

Dynamic contact response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading

  • Coskun, Irfan
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.319-334
    • /
    • 2010
  • The dynamic response of a finite Bernoulli-Euler beam resting on a tensionless Pasternak foundation and subjected to a concentrated harmonic load is investigated in this study. This load may be applied at the center of the beam, or it may be offset from the center. Since the elastic foundation is assumed to be tensionless, the beam may lift off the foundation, resulting in contact and non-contact regions in the system. An analytical/numerical solution is obtained from the governing equations of the contact and non-contact regions to determine the coordinates of the lift-off points. Although there is no nonlinear term in the equations, the problem appears to be nonlinear since the contact regions are not known in advance. Due to that nonlinearity, the essentials of the problem (the coordinates of the lift-off points) are calculated numerically using the Newton-Raphson technique. The results, which represent the symmetric and asymmetric responses of the beam, are presented graphically in this work. They illustrate the effects of the forcing frequency and the beam length on the extent of the contact regions and displacements.

Social Contact Patterns Associated With Tuberculosis: A Case-control Study in Southwest Iran

  • Amoori, Neda;Cheraghian, Bahman;Amini, Payam;Alavi, Seyed Mohammad
    • Journal of Preventive Medicine and Public Health
    • /
    • v.55 no.5
    • /
    • pp.485-491
    • /
    • 2022
  • Objectives: Tuberculosis (TB) is a major public health concern worldwide. Social contact patterns can affect the epidemiology and risk of airborne diseases such as TB. This study was designed to investigate the social contact patterns associated with TB. Methods: In this case-control study, groups of participants with and without TB were matched by age and sex. Participants reported the nature, location, frequency, and average duration of social contacts over 1 month. The duration and number of social and spatial contacts were compared between groups using the chi-square test and the t-test. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to quantify the relationship between social contact time and TB status. Data were analyzed using Stata version 11 statistical software. A p-value of <0.05 was considered to indicate statistical significance. Results: In this study, 80 patients with TB and 172 control participants were included, and a total of 3545 social contacts were registered. Social contact with family members (OR, 1.72; 95% CI, 1.10 to 2.40), contact with a person with TB (OR, 1.53; 95% CI, 1.16 to 2.01), and contact at the participant's home (OR, 1.42; 95% CI, 1.19 to 1.82) were significantly associated with TB status. Conclusions: The duration of long-term social contact, rather than the number of contacts, may be the main contact-related factor associated with TB transmission in this population. The focus of contact-tracing efforts should be on finding and treating both family members and long-term contacts in non-household settings.

Current Status of Emitter Wrap-Through c-Si Solar Cell Development (에미터 랩쓰루 실리콘 태양전지 개발)

  • Cho, Jaeeock;Yang, Byungki;Lee, Honggu;Hyun, Deochwan;Jung, Woowon;Lee, Daejong;Hong, Keunkee;Lee, Seong-Eun;Hong, Jeongeui
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.17-26
    • /
    • 2013
  • In contrast to conventional crystalline cells, back-contact solar cells feature high efficiencies, simpler module assembly, and better aesthetics. The highest commercialized cell and module efficiency was recorded by n-type back-contact solar cells. However, the mainstream PV industry uses a p-type substrate instead of n-type due to the high costs and complexity of the manufacturing processes in the case of the latter. P-type back-contact solar cells such as metal wrap-through and emitter wrap-through, which are inexpensive and compatible with the current PV industry, have consequently been developed. In this paper the characteristics of EWT (emitter wrap-through) solar cells and their status and prospects for development are discussed.

Reduction of Current Crowding in InGaN-based Blue Light-Emitting Diodes by Modifying Metal Contact Geometry

  • Kim, Garam;Kim, Jang Hyun;Park, Euyhwan;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.588-593
    • /
    • 2014
  • Current crowding problem can worsen the internal quantum efficiency and the negative-voltage ESD of InGaN-based LEDs. In this paper, by using photon emission microscope and thermal emission microscope measurement, we confirmed that the electric field and the current of the InGaN-based LED sample are crowded in specific regions where the distance between p-type metal contact and n-type metal contact is shorter than other regions. To improve this crowding problem of electric field and current, modified metal contact geometry having uniform distance between the two contacts is proposed and verified by a numerical simulation. It is confirmed that the proposed structure shows better current spreading, resulting in higher internal quantum efficiency and reduced reverse leakage current.

Calculation of Electrodynamic Repulsion Force in Molded Case Circuit Breakers Using the 3-D Finite Element Analysis (3차원 유한요소 해석을 이용한 배선용 차단기의 전자반발력 계산)

  • Kim, Yong-Gi;Park, Hong-Tae;Song, Jung-Chun;Seo, Jung-Min;Degui, Chen
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.137-140
    • /
    • 2003
  • To the optimization design of molded case circuit breakers(MCCBs), it is necessary and important to calculate the electro-dynamic repulsion force acting on the movable conductor. With 3-D finite element nonlinear analysis, according to the equations among current-magnetic field-repulsion force and taking into account the ferromagnet, contact bridge model is introduced to simulate the current constriction between contacts, so Lorentz and Holm force acting on the movable conductor and contact, respectively, can be integrated to calculate. Coupled with circuit equations, the opening time of movable contact also can be obtained using iteration with the restriction of contact force. Simulation and experiment for repulsion forte and opening time of five different configuration models have been investigated. The results indicate that the proposed method is effective and capable of evaluating new design of contact systems in MCCBs.

  • PDF