• Title/Summary/Keyword: Contact Angle

Search Result 2,224, Processing Time 0.033 seconds

Wetting Properties of Biopolyester Films Prepared by Thermo-Compression Method

  • Rhim, Jong-Whan;Hong, Seok-In
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.234-237
    • /
    • 2007
  • Water resistance of three biopolyester films, such as poly-L-lactate (PLA), poly-hydroxybutyrate-co-valerate (PHBV), and Ecoflex, and low density polyethylene (LDPE) film was investigated by measuring contact angle of various probe liquids on the films. The properties measured were initial contact angle of water, dynamic change of the water contact angle with time, and the critical surface energy of the films. Water contact angle of the biopolyester films ($57.62-68.76^{\circ}$) was lower than that of LDPE film ($85.19^{\circ}$) indicating biopolyester films are less hydrophobic. The result of dynamic change of water contact angle also showed that the biopolyester films are less water resistant than LDPE film, but much more water resistant than cellulose-based packaging materials. Apparent critical surface energy for the biopolyester films (35.15-38.55 mN/m) was higher than that of LDPE film (28.59 mN/m) indicating LDPE film is more hydrophobic.

Wetting properties between silver-copper-titanium braze alloy and hexagonal boron nitride

  • Sechi, Yoshihisa;Matsumoto, Taihei;Nakata, Kazuhiro
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.205-209
    • /
    • 2009
  • Wetting properties between silver-copper-titanium braze alloys with different titanium contents up to 2.8 mass% and hexagonal boron nitride ceramics were investigated using sessile drop method at 1123K in Argon. The final contact angle is less than $30^{\circ}$ when the Ti content was over 0.41 mass%. Meanwhile, the contact angle curves show different behavior. In case of using braze alloy containing 2.8 mass% of titanium, the initial contact angle is acute angle just after the melting of braze. In case of brazes containing titanium less than 2.26 mass%, the contact angle is larger than $90^{\circ}$ at the beginning and slowly decreases to acute angle. The reaction layer of titanium nitride is observed at the interface. In addition, the reaction of Ti in the braze and N in the bulk h-BN seemed to show diffusion limited spreading.

  • PDF

Development of a Novel System for Measuring Sizing Degree Based on Contact Angle(I) - Development of a Novel Principle for Automatic Measurement of Contact Angle - (접촉각 측정 원리를 이용한 새로운 사이즈도 측정기 (제1보) -자동 접촉각 측정 원리의 개발 -)

  • 이찬용;김철환;최경민;박종열;권오철
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.43-52
    • /
    • 2003
  • The new principle to measure a sizing degree by a contact angle was developed using an automatic determination of the 3-end point coordinates of the water droplet on a sheet, which could diminish the operator's bias during measurement. A constant amount of water was first placed on a sample sheet by a water dispenser, and then an image of the liquid droplet was captured by a digital camera and then transmitted to a computer. The program measuring for contact angle extracted a liquid contour by Gaussian function combined with a 8-direction chain code. The Euclidean equation was applied to the binary image of the liquid contour in order to measure the diameter of the contour. Finally, the contact angle of the liquid was calculated by using the diameter and the top coordinates. In addition, a surface free energy of the sample sheet and an elapsed time taken up to the complete absorption into the sheet were simultaneously measured with the contact angle.

Effect of Different Aging Times on Sn-Ag-Cu Solder Alloy

  • Ervina Efzan, M.N.;Siti Norfarhani, I.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.112-116
    • /
    • 2015
  • This work studied the thickness and contact angle of solder joints between SAC 305 lead-free solder alloy and a Copper (Cu) substrate. Intermetallic compound (IMC) thickness and contact angle of 3Sn-Ag-0.5Cu (SAC 305) leadfree solder were measured using varying aging times, at a fixed temperature at 30℃. The thickness of IMC and contact angle depend on the aging time. IMC thickness increases as the aging increases. The contact angle gradually decreased from 39.49° to 27.59° as aging time increased from zero to 24 hours for big solder sample. Meanwhile, for small solder sample, the contact angle increased from 32.00° to 40.53° from zero to 24 hours. The IMC thickness sharply increased from 0.007 mm to 0.011 mm from zero to 24 hours aging time for big solder. In spite of that, for small solder the IMC thickness gradually increased from 0.009 mm to 0.017 mm. XRD analysis was used to confirm the intermetallic formation inside the sample. Cu6Sn5, Cu3Sn, Ni3Sn and Ni3Sn2 IMC layers were formed between the solder and the copper substrate. As the aging time increased, the strength of the solder joint mproved due to reduced contact angle.

Characterization of Surfaces by Contact Angle Goniometry - I. Contact Angle Measurement by Laser Beam Projection- (접촉각측정에 의한 표면의 특성연구 - I. 레이저광선 투영에 의한 접촉각의 측정방법-)

  • Park Chung Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.1
    • /
    • pp.70-75
    • /
    • 1991
  • Contact angle measuring device was developed in this laboratory using laser beam projec-tion. The new method allows for rapid and direct determination of stationary, advancing, and receding contact angles on both planar and nonplanar solid surfaces, including fibers with very small diameters. A narrow laser beam impinges on an edge of an interface of liquid and solid. This makes two projected laser beam lines upon and radiating from the center of a protractor scale on a tangent screen. Contact angle is measured by determining the difference in angle on the protractor scale between the two projected laser beam lines. Contact angles measured on Perspex-CQ using this instrument were in agreement with the literature. it was shown that this instrument provides a novel method for the facile and accurate measurement of contact angles.

  • PDF

A Study on the Anisotropic Flow Characteristics of Droplets on Rice Leaf Surface (벼 잎 표면에서 액적의 이방성 흐름 특성에 관한 연구)

  • Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.251-255
    • /
    • 2017
  • In this study, we aimed to clarify the wettability and anisotropic flow characteristics of rice leaves as a basic study for engineering applications of anisotropic flow characteristics of rice leaf surface. To investigate the surface structure of rice leaf, the micro grooves and asperities of rice leaves were analyzed and quantified by scanning electron microscope, Confocal laser scanning microscopy, and stylus profilometer. The analysis of the structure of rice leaf surface confirmed that asymmetrical cone - like protrusions in leaf veins were inclined toward the leaf tip. The static contact angle test showed that the contact angle at the midline vein or leaf vein location where the micropapilla is concentrated is about $20^{\circ}$ higher than the leaf blade position. The contact angles of fresh and dried rice leave were also compared. The dried rice leaves showed a contact angle of about $5^{\circ}$ to $15^{\circ}$ higher than that of fresh leaves, suggesting that the volume of the protrusions decreased as the water was removed, thus reducing the contact area with the droplet. In the contact angle history test the hysteresis in the leaf tip direction was found to be much lower than that in the leaf petiole direction. This results can be explained that asymmetrical cone - like protrusions had a significant effect on the droplet flow characteristics through contact angle hysteresis experiment.

Simulation for Contact Angle of Droplet on Riblet Surface

  • Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.202-206
    • /
    • 2017
  • In this study, the hydrophobicity properties for riblet surfaces that replicate shark skin are simulated. Riblet surfaces with surface roughness on riblets are generated numerically based on the measured data of real shark skin. We assumed that a rib on a scale is hemi-elliptical surface. The surface used in the simulation for the calculation of contact angle is composed of 9 scales like checkerboard type with a roughness. The contact angle of a water droplet can be calculated using the Wenzel equation and Cassie-Baxter equation for the generated riblet surfaces. The variation of contact angles with a fractional depth of penetration for the generated shark skin surfaces without and with coatings is demonstrated in the condition of solid-air-water. The results show that the contact angle for the surface without coating decreases with an increase of the fractional depth of penetration more drastically than that for the surface with coating. We compared the experimental and simulated results. It is shown that the measured contact angles of the shark skin template and the shark skin replica are within the simulated results. Therefore the contact angle of water droplet for rough surfaces can be estimated by the developed numerical method in this study.

The Kinematic Analysis on the Instep Shooting Motion of Female High School Soccer Players According to the Angles of Approach (접근각도에 따른 여자고등학교 축구선수의 인스텝 슈팅 동작에 관한 운동학적 분석)

  • Cho, Kyu-Kwon;Kim, You-Sin;Choi, Gil-Soon
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.153-163
    • /
    • 2006
  • The purpose of this research was to analyze kinematic variables that appear during the instep shooting motion of female high school soccer players according to the angle of approach to find effective shooting motions. For this experiment, 5 female high school soccer players from the K city were participated in this study as the subject group, and as a through comparison and analysis of the resulting numbers of the variables, we came to the following conclusions. 1) Stride length and stride length/lower extremity length increased as the angle of approach increased. 2) As for C.O.G movement displacement, it was highest at an approach angle of $90^{\circ}$ during Right Foot Contact, at $135^{\circ}$ during Left Foot Contact, at $0^{\circ}$ during Rigth Toe Top, at $45^{\circ}$ during Impact, and at $0^{\circ}$ during Follow through. 3) The time required for each phase was longest at APP and shortest at BSP. The time required increased a little as the angle of approach increased, and the total time required also increased as the angle of approach increased. 4) The angle of the ankle joint was largest at an approach angle of $45^{\circ}$ for all events except Right Foot Contact. 5) The angle of the knee joint was largest at an approach angle of $135^{\circ}$ during Right Foot Contact, at $0^{\circ}$ during Left Foot Contact, at $45^{\circ}$ during Right Toe Top, at $135^{\circ}$ during Impact, and at $90^{\circ}$ during Follow through. 6) The angle of the hip joint was largest at an approach angle of $90^{\circ}$ during Right Foot Contact, at$0^{\circ}$ during Left Foot Contact, at $0^{\circ}$ during Right Toe Top, at $90^{\circ}$ during Impact, and at $0^{\circ}$ during Follow through.

Precise Static Contact Angle Measurements Using Pythagolas Rule (피타고라스 원리를 이용한 정적 접촉각 정밀 각도 측정방법)

  • Choi, Jin-Yeong;Kwon, Dong-Jun;Wang, Zuo-Jia;Shin, Pyeong-Su;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.15 no.2
    • /
    • pp.57-62
    • /
    • 2014
  • Pythagolas rule was used for investigation of static contact angle in particular figures. Static contact angle measurement was important to evaluate the wettability between solid and liquid. Optimum measurement method and standardization of calculation for static contact angle were investigated for practical application. Optimum diameter of droplet for static contact angle measurement was confirmed as 1 mm. Contact angle measurement using Pythagolas rule was also used to calculate advancing, receding angle and wettability of different surface condition. At last, it was concluded that the Pythagolas rule method was more accurate than general lineation method for static contact angle measurement.

The Kinematic Analysis and the Study of Muscle Activities during Backhand Drive in Squash (스쿼시 백핸드 드라이브 동작 시 운동학적 분석과 근활성도에 관한 연구)

  • Cho, Kyu-Kwon;Kim, You-Sin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.11-21
    • /
    • 2007
  • The purpose of this study was to examine the differences of kinematics and muscle activities depending on the changes of angle approaching balls during backhand drive in squash. The results are as follows. Stride time took the longest at AD2 and step lengths were the biggest at AD1 of left foot contact and right foot contact and AD2 of impact and follow-through. The center of gravity and the speed of racket head were the highest at AD3 and at AD2. Angle of shoulder joint were the biggest at AD1 of left foot contact, right foot contact and impact and AD3 of follow-through. Angle of elbow joint were the biggest at AD3 of left foot contact, right foot contact and follow-through and AD2 of impact. Angle of pelvis joint were the biggest at AD2 of left foot contact, AD1 of right foot contact and AD3 of impact and follow-through. Angle of knee joint were the biggest at AD2 of left foot contact, AD1 of right foot contact and AD3 of impact and follow-through. Angle of ankle joint were the biggest at AD1 of left foot contact and AD3 of right foot contact, impact and follow-through. According to the analysis results of triceps brachii, latissimus dorsi, brachioradialis muscle and flexor carpi ulnaris muscle activities were high at AD1 of all phases. Analysis results of vastus lateralis, vastus medialis, tibialis anterior and gastrocnemius medial muscle activities were high at AD2 of phase1 and phase3. Those of vastus lateralis, vastus medialis and tibialis anterior, gastrocnemius medial were high at AD3 of Phase 2 and AD1 of phase2.