• 제목/요약/키워드: Consumed-Power

검색결과 383건 처리시간 0.031초

직류급전시스템 회생용 인버터의 시험설비 구축 및 특성시험 (Development of Inverter for Regenerative Power and Test Equipment)

  • 김주락;한문섭;김용기;김정훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.399-406
    • /
    • 2008
  • DC transit system has been adopted in the metropolitan area, Korea since 1974. EMU in this system always reiterates that acceleration and retardation. When EMU decelerates using electric breaking, regenerative power occurs. Regenerative power can be consumed in vicinity EMU on the same line or in resistor. If DC transit system has inverter for reusing regenerative power, Energy efficiency in DC transit system will be increased. This paper present the developed inverter for regenerative power and its test equipment. Test result of developed inverter is presented.

  • PDF

태양광 발전 시스템을 위한 부스트 컨버터의 회로 구성에 따른 직류측 스위치 손실 분석 (DC Link Switch Loss Analyses according to Circuit Structures of the Boost Converter for Photovoltaic Generation System)

  • 이승요
    • 전기학회논문지P
    • /
    • 제61권4호
    • /
    • pp.192-198
    • /
    • 2012
  • Switch losses directly affect the efficiency of power conversion systems and those have big differences according to the power consumed by load systems and the structures of power conversion circuits. In this paper, analyses for switch losses in DC link converter are performed based on the circuit structures of the DC/DC converter in photovoltaic generation system whose output power is varied according to the amount of solar radiation, temperature and partial shade on the solar modules. Boost converter is adopted as a DC link converter topology of the photovoltaic generation system and the loss analyses for the switches used in the boost converters are performed according to the circuit structures. Analyses like the things performed in this paper will be a prerequisite to designing the photovoltaic generation system whose output power is changed according to the environmental variations.

전력회수 능력을 갖는 전압원 컨버터-인버터 세트로 구성 된 부하모의 장치 (Load Simulator with Power-Recovery Capability Based on Voltage Source Converter-Inverter Set)

  • 배병열;한병문
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권4호
    • /
    • pp.181-187
    • /
    • 2005
  • This paper describes a load simulator with power-recovery capability, which is based on the voltage source converter-inverter set. The load simulator described in this paper can save the electric energy that should be consumed to test the operation and performance of the distributed generation system and the power quality compensator. The load simulator consists of a converter-inverter set with a DSP controller for system control and PWM pulse generation. The converter operates as a universal load to model the linear load and the non-linear load, while the inverter feed the energy back to the power source with harmonic compensation. The load simulator can be widely used in the lab to test the performance of the distributed generation system and the power quality compensator.

Load Dispatching Control of Multiple-Parallel-Converters Rectifier to Maximize Conversion Efficiency

  • Orihara, Dai;Saitoh, Hiroumi;Higuchi, Yuji;Babasaki, Tadatoshi
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1132-1136
    • /
    • 2014
  • In the context of increasing electric energy consumption in a data center, energy efficiency improvement is strongly emphasized. In a data center, electric energy is largely consumed by DC power supply system, which is based on a rectifier composed by multiple parallel converters. Therefore, rectifier efficiency must be improved for minimizing loss of DC power supply system. Rectifier efficiency can be modulated by load allocation to converters because converter efficiency depends on input AC power. In this paper, we propose a new control method to maximize rectifier efficiency. The method can control load allocation to converters by introducing active power converter control scheme and start-and-stop of converters. In order to illustrate optimal load allocations in a rectifier, a maximization problem of rectifier efficiency is formulated as a nonlinear optimization one. The problem is solved by Lagrangian relaxation method and the computation results provide the validity of proposed method.

High-Power-Density Power Conversion Systems for HVDC-Connected Offshore Wind Farms

  • Parastar, Amir;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.737-745
    • /
    • 2013
  • Offshore wind farms are rapidly growing owing to their comparatively more stable wind conditions than onshore and land-based wind farms. The power capacity of offshore wind turbines has been increased to 5MW in order to capture a larger amount of wind energy, which results in an increase of each component's size. Furthermore, the weight of the marine turbine components installed in the nacelle directly influences the total mechanical design, as well as the operation and maintenance (O&M) costs. A reduction in the weight of the nacelle allows for cost-effective tower and foundation structures. On the other hand, longer transmission distances from an offshore wind turbine to the load leads to higher energy losses. In this regard, DC transmission is more useful than AC transmission in terms of efficiency because no reactive power is generated/consumed by DC transmission cables. This paper describes some of the challenges and difficulties faced in designing high-power-density power conversion systems (HPDPCSs) for offshore wind turbines. A new approach for high gain/high voltage systems is introduced using transformerless power conversion technologies. Finally, the proposed converter is evaluated in terms of step-up conversion ratio, device number, modulation, and costs.

센서 기반 사용자 상태 인식 알고리즘을 이용한 저전력 서비스에 관한 연구 (Study on the Low Power Service with User State Recognition Algorithm Using Sensors)

  • 이도경;홍원기;차경애
    • 대한임베디드공학회논문지
    • /
    • 제10권2호
    • /
    • pp.91-99
    • /
    • 2015
  • The electric power consumed by the embedded devices has become a critical issue because the reduction of power consumption is an important factor to prolong the battery-operated devices' lifetime. Many researches and techniques to reduce the power consumption have been proposed and developed but any power method cannot guarantee optimal power consumption of an embedded device - it would be faced with numerous situation - in all ways. Specifically, power researches for embedded devices deployed in the industry field have hardly been done. In this paper, low power service is proposed to minimize power reduction with the several usage status of embedded devices in the industry field. The usage status is basically classified according to the distance between the device and the user which is obtained by the ultrasonic and PIR sensor. The performance evaluation shows that the proposed scheme can reduce the power consumption by up to 45.3% compared to the device with no power reduction scheme. It also shows that the power consumption of the proposed scheme is 5.2% ~ 16.8% lower than that of the timeout scheme.

Electric power consumption predictive modeling of an electric propulsion ship considering the marine environment

  • Lim, Chae-og;Park, Byeong-cheol;Lee, Jae-chul;Kim, Eun Soo;Shin, Sung-chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.765-781
    • /
    • 2019
  • This study predicts the power consumption of an Electric Propulsion Ship (EPS) in marine environment. The EPS is driven by a propeller rotated by a propulsion motor, and the power consumption of the propeller changes by the marine environment. The propulsion motor consumes the highest percentage of the ships' total power. Therefore, it is necessary to predict the power consumption and determine the power generation capacity and the propeller capacity to design an efficient EPS. This study constructs a power estimation simulator for EPS by using a ship motion model including marine environment and an electric power consumption model. The usage factor that represents the relationship between power consumption and propulsion is applied to the simulator for power prediction. Four marine environment scenarios are set up and the power consumed by the propeller to maintain a constant ship speed according to the marine environment is predicted in each scenario.

광원별 센서등기구의 대기전력 특성에 관한 연구 (A Study on the Standby Power Characteristics of Sensor Luminaires)

  • 박창용;서정현
    • 조명전기설비학회논문지
    • /
    • 제28권10호
    • /
    • pp.9-15
    • /
    • 2014
  • Standby power, so called an electric vampire, is a power which is consumed by appliances and office equipments connected to power sources while the devices are not performing. Sensor luminaires consist of PIR(Pyroelectric Infrared Ray) sensor, illuminance sensor(CdS), and light source. The sensor luminaires are one of the devices that consume a huge amount of standby power; it stands by for an average sum of 23 hours a day and performs only when moving subjects are detected under it, which barely takes up an hour per day. The purpose of this study is to provide basic materials to the selection of standby power items and to enable to explore a way to decrease the standby power by measuring and analyzing the power consumption of sensor luminaires. According to the results, the average standby power of LED sensor luminaires is 1.1W which is significantly higher than other products, and decrease in the standby power consumption of SMPS is important through the measurement.

An Adaptive Power-Controlled Routing Protocol for Energy-limited Wireless Sensor Networks

  • Won, Jongho;Park, Hyung-Kun
    • Journal of information and communication convergence engineering
    • /
    • 제16권3호
    • /
    • pp.135-141
    • /
    • 2018
  • Wireless sensor networks (WSN) are composed of a large number of sensor nodes. Battery-powered sensor nodes have limited coverage; therefore, it is more efficient to transmit data via multi-hop communication. The network lifetime is a crucial issue in WSNs and the multi-hop routing protocol should be designed to prolong the network lifetime. Prolonging the network lifetime can be achieved by minimizing the power consumed by the nodes, as well as by balancing the power consumption among the nodes. A power imbalance can reduce the network lifetime even if several nodes have sufficient (battery) power. In this paper, we propose a routing protocol that prolongs the network lifetime by balancing the power consumption among the nodes. To improve the balance of power consumption and improve the network lifetime, the proposed routing scheme adaptively controls the transmission range using a power control according to the residual power in the nodes. We developed a routing simulator to evaluate the performance of the proposed routing protocol. The simulation results show that the proposed routing scheme increases power balancing and improves the network lifetime.

시화호 조력발전소 신설에 따른 전력계통 특성 및 경제적 이득 분석 (A Study on Power System Characteristics and Economic Benefit by Operating the New SIHWA Tidal Power Plant)

  • 김규호;송경빈;김상민;이성무;최홍석
    • 전기학회논문지
    • /
    • 제61권6호
    • /
    • pp.791-796
    • /
    • 2012
  • This paper presents the various analysis of the power system for operating the new SIHWA tidal power plant. In the analysis of the power system, summer load condition of 2011 is used. Especially, power flow, fault current, voltage and contingency of SIHWA tidal power plant area are analyzed by using PSS/E and there is no problem for the dynamic stability simulation. The new SIHWA tidal power plant is located in near metropolitan area where about 43% amount of the system load is consumed. Therefore, transmission losses are reduced. In addition, system marginal price can be lowered by generating the new SIHWA tidal power plant. The generation pattern of the SIHWA tidal plant is analyzed and the changes of generation are presented for various water levels by control of the rotor angle alpha and beta in water wheel generator.