• 제목/요약/키워드: Construction robot

검색결과 315건 처리시간 0.036초

High-Precision Contour Control by Gaussian Neural Network Controller for Industrial Articulated Robot Arm with Uncertainties

  • Zhang, Tao;Nakamura, Masatoshi
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.272-282
    • /
    • 2001
  • Uncertainties are the main reasons of deterioration of contour control of industrial articulated robot arm. In this paper, a high-precision contour control method was proposed to overcome some main uncertainties, such as torque saturation, system delay dynamics, interference between robot links, friction, and so on. Firstly, each considered factor of uncertainties was introduced briefly. Then proper realizable objective trajectory generation was presented to avoid torque saturation from objective trajectory. According to the model of industrial articulated robot arm, construction of Gaussian neural network controller with considering system delay dynamic, interference between robot links and friction was explained in detail. Finally, through the experiment and simulation, the effectiveness of proposed method was verified. Furthermore, based on the results it was shown that the Gaussian neural network controller can be also adapted for the various kinds of friction and high-speed motion of industrial articulated robot arm.

  • PDF

영구자석을 이용한 선체 외판 주행 로봇 개발 (Development of a hull-plate moving robot with permanent magnets)

  • 김은영;이동훈;김호경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.990-995
    • /
    • 2008
  • During the ship's construction process, most high place workings have been carried out by human power, like welding, grinding and so on. Because of the ability to relieve human beings from these, the need of developing a hull-plate moving robot has been rising. This paper describes a hull-plate moving robot, using magnet modules as the adhesive method. Magnet modules maintain the magnetic force between hull-plate and magnets constantly. So that allows the robot to perform movements on the curved plate without the loss of adhesive force. The robot consists of driving motors, control system and magnet modules. The performance of the robot is verified on the curved plate.

  • PDF

Intelligent navigation and control system for a mobile robot based on different programming paradigms

  • Kubik, Tomasz;Loukianov, Andrey A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.36.6-36
    • /
    • 2001
  • The problem of robot navigation and control is a complex task. Its complexity and characteristics depends on the characteristics of the environment robot inhabits, robot construction (mechanical abilities to move, sense) and the job the robot is supposed to do. In this paper we propose a hybrid programming approach to mobile robot navigation and control in an indoor environment. In our approach we used declarative, procedural, and object oriented programming paradigms and we utilized some advantages of our distributed computing architecture. The programming languages corresponding to the paradigms we used were C, C++ and Prolog. In the paper we present some details of our mobile robot hardware and software structure, focusing on the software design and implementation.

  • PDF

로보틱 크레인 기반 고층건물 구조체 시공 자동화 시스템 개발 (Development of Automatic Construction System for High-Rise Building Based on Robotic Crane)

  • 조훈희;신윤석;강경인;박귀태
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2007년도 정기학술발표대회 논문집
    • /
    • pp.177-181
    • /
    • 2007
  • 건설현장은 타제조업에 비해 아직도 노동집약적인 특성을 벗어나지 못하고 있는 실정이다. 이런 특성으로 인하여 건설산업은 3D업종으로 인식되고 있다. 최근 들어 이에 대한 해결책으로 건설 현장에서의 로봇의 활용 방안에 대한 연구가 증가하고 있다. 본 연구에서는 건설현장에서의 로봇활용 기술이 전 세계에서 가장 앞서있는 일본의 연구결과를 개선하고 한국형 건설환경에 적합한 경제성이 있는 새로운 고층건물 구조체 자동화 시골기술을 개발하고자 한다.

  • PDF

고층 건축을 위한 수직외벽 청소로봇의 작업 시나리오 개발 (Development of a Vertically Moving Scenario of Robotic Exterior Wall Cleaning for High-rised Building)

  • 김균태;김창한;한재구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.195-196
    • /
    • 2011
  • Recently, the number of high-rise buildings has been on the rise, which has meant that maintenance cost has increased by two and three times, along with the increase in the construction cost. It is suggested that the use of an auto-cleaning robot could increase the productivity and safety of cleaning work, which is mostly done outside of a building. In particular, the guide rail on a high-rise building could be useful in this capacity, as it has the advantage of not being significantly influenced by factors of the external environment, including wind pressure. For this reason, this research is preliminary research into a cleaning automation for a high-rise building, and aims to draw up a scenario for the vertically moving robot.

  • PDF

고층건물 시공자동화를 위한 다중 클라이밍 유압로봇의 운동 동기제어 (Synchronous Motion Control of Multi-Climbing Hydraulic Robots for High-Rise Building Construction Automation)

  • 홍윤석;장효환
    • 한국정밀공학회지
    • /
    • 제26권9호
    • /
    • pp.103-111
    • /
    • 2009
  • Multi-climbing hydraulic robots are used to lift construction factory (CF) synchronously for applications in the automation of a high-rise building construction. In this study, synchronous motion controller is proposed for the hydraulic robots, whose strategy is not only to make each robot follow the reference path basically by sliding-mode control, but also to synchronize motions of two adjacent cent robots consecutively by cross-coupled control technique. Simulations are performed by using SIMULINK for a system similar to a practical application that includes unbalance in CF and wind disturbance. The results show that the proposed controller significantly reduces synchronous errors, compared to the individual controller for each hydraulic robot.

4차산업혁명기반 건설자동화를 통한 초고층 건축물 유지관리 로봇시스템 개발 (Development of High-rise building Maintenance Robot System through Construction Automation based on the 4th Industrial Revolution)

  • 김지훈;우미소;이동운
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.18-19
    • /
    • 2020
  • Domestic and foreign high-rise buildings are expected to continue to increase in the future. In addition, recently, residents and landlords are demanding maintenance necessary to secure the performance of sustainable buildings, so an effective management plan is needed. Therefore, this study aims to develop customized technologies that can be effectively applied to building structures by comprehensively analyzing existing technology-based research cases. As a result, it is expected that this will serve as a stepping stone to present a s+ample of future technology development along with a reduction in labor dependency on maintenance and quality improvement.

  • PDF

Application of Quadratic Algebraic Curve for 2D Collision-Free Path Planning and Path Space Construction

  • Namgung, Ihn
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권1호
    • /
    • pp.107-117
    • /
    • 2004
  • A new algorithm for planning a collision-free path based on an algebraic curve as well as the concept of path space is developed. Robot path planning has so far been concerned with generating a single collision-free path connecting two specified points in a given robot workspace with appropriate constraints. In this paper, a novel concept of path space (PS) is introduced. A PS is a set of points that represent a connection between two points in Euclidean metric space. A geometry mapping (GM) for the systematic construction of path space is also developed. A GM based on the 2$^{nd}$ order base curve, specifically Bezier curve of order two is investigated for the construction of PS and for collision-free path planning. The Bezier curve of order two consists of three vertices that are the start, S, the goal, G, and the middle vertex. The middle vertex is used to control the shape of the curve, and the origin of the local coordinate (p, $\theta$) is set at the centre of S and G. The extreme locus of the base curve should cover the entire area of actual workspace (AWS). The area defined by the extreme locus of the path is defined as quadratic workspace (QWS). The interference of the path with obstacles creates images in the PS. The clear areas of the PS that are not mapped by obstacle images identify collision-free paths. Hence, the PS approach converts path planning in Euclidean space into a point selection problem in path space. This also makes it possible to impose additional constraints such as determining the shortest path or the safest path in the search of the collision-free path. The QWS GM algorithm is implemented on various computer systems. Simulations are carried out to measure performance of the algorithm and show the execution time in the range of 0.0008 ~ 0.0014 sec.

마킹 로봇의 자동화를 위한 LiDAR 센서 기반 철근배근 오차 측정 및 먹매김 수행 프로세스 연구 (Measuring Rebar Position Error and Marking Work for Automated Layout Robot Using LiDAR Sensor)

  • 김태훈;임현수;조규만
    • 한국건축시공학회지
    • /
    • 제23권2호
    • /
    • pp.209-220
    • /
    • 2023
  • 먹매김 로봇은 허용오차 이내의 정밀도를 확보하는 것이 매우 중요하다. 그러나 골조공사는 시공과정에서 철근배근의 변위가 빈번하게 발생하며, 해당오차는 먹선이나 철근위치의 수정을 요구한다. 먹매김 로봇은 정밀도 확보 및 자동화를 위해 철근의 오차를 측정하고 먹선과 철근의 수정을 스스로 판단할 수 있어야 한다. 이에 본 연구는 LiDAR 센서를 통한 철근배근의 오차 측정방안과 이를 바탕으로 먹매김 판단 프로세스를 제시하였다. LiDAR 센서를 활용한 철근인식 실험결과 평균적으로 5mm 내외의 오차를 발생하였으며, 이는 일반적으로 벽체에 적용되는 철근 수준에서 인식을 신뢰할만한 수준으로 나타났다. 또한 철근오차를 범위별로 판단하여 철근의 보정여부와 먹매김의 수행여부를 로봇이 스스로 판단할 수 있는 프로세스를 제시하였다. 본 연구결과는 시공오차를 고려한 먹매김로봇의 자동운영에 기여할 수 있으며 이를 통해 골조품질을 향상시킬 수 있을 것으로 기대된다.

건물 외벽 장애물 극복을 위한 3단 모듈형 승월로봇 (A Three-unit Modular Climbing Robot for Overcoming Obstacles on the Facade of Buildings)

  • 이청화;주백석
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.114-123
    • /
    • 2017
  • This paper introduces a novel obstacle-climbing robot that moves on the facade of buildings and its climbing mechanism. A winch system set on the top of the building makes the vertical motion of the robot while it climbs obstacles that protrude from the wall surface. The obstacle-climbing robot suggested in this research is composed of a main platform and three modular climbing units. Various sensors installed on each climbing unit detect the obstacles, and the robot controller coordinates the three units and the winch to climb the obstacles using the obstacle-climbing mechanism. To evaluate the performance of the developed robot prototype, a test bed, which consists of an artificial wall and an obstacle, was manufactured. The obstacle size and the time required to climb the obstacle were selected as the performance indices, and extensive experiments were carried out. As a result, it was confirmed that the obstacle-climbing robot can climb various-sized obstacles with a reasonable speed while it moves on the wall surface.