• Title/Summary/Keyword: Construction fields of underground structure

Search Result 11, Processing Time 0.025 seconds

A Study on Accuracy Analysis and Application of Postion Tracking Technique for Worker Safety Management in Underground Space Construction Field (지하공간 건설시공현장에서의 작업자 안전관리를 위한 위치추적기술 정확도 분석 및 활용 연구)

  • Seol, Moonhyung;Jang, Yonggu;Son, Myungchan;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.45-51
    • /
    • 2013
  • In the construction site of underground buildings which have severe environment such as dust, noise, vibration, the technology of rescue the builders in the construction site when accident occurs by tracking the location of the builders and express the mission of supervisor smoothly. In this study, in order to acquire the location information of the builders in the construction site of underground buildings by using MEMS INS and air pressure sensor, we firstly performed the field test in construction site, analyzed the location and the elevation accuracy based on the detected results, and then verified its practicality and rationality after all. As a result, we could acquire worker's position-accuracy within 10m in horizontal direction and 4m in vertical direction. Therefore we could judge availability in construction fields of underground structure.

A Study on the Flaw Prevention Countermeasure of Crack in Apartment House Underground Parking Area (아파트 지하주차장의 균열방지 대책 - 현장사례조사를 중심으로 -)

  • Jung Soon-Oh;Suh Sang-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.3 no.1 s.9
    • /
    • pp.115-123
    • /
    • 2002
  • Recently all basement floor of apartment site have utilized as parking area to use efficiently space and to ensure lawful parking car figure. And the top of parking area has used as working vehicle's path and materials' carrying area during construction. Thus because crack and leakage status in underground parking area of under construction or completion building generate excessively not only performance of structure is diminished but also flaw repair cost is put in a lot of. And abroad confidence is diminish. So this study is intended to diminish flaw focus on investigation of under construction and completion fields through examine closely cause of crack and leakage status of apartment house underground parking area and prepare countermeasure with respect to design, construction and maintenance.

A Comparative Study on Construction Method for a Large Underground Station under Pile Supported Bridge (모형실험을 이용한 교량하부 통과 구간 굴착공법 비교 연구)

  • Yoo, Chung-Sik;Chung, Eun-Mok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.177-190
    • /
    • 2017
  • This paper presents the results of an experimental study on the effect of large underground station construction method under an existing pile supported bridge using reduced-scale model tests. A series of tests were conducted on design alternatives using 1g models for different design options for which tunnel structures were created considering the similitude law. Deformation fields obtained using the PIV analysis and LVDTs together with strains in tunnel structures were used to investigate the effect of the construction methods on the pile supported bridge. The results of the tests demonstrated that the pipe roof structure is more efficient in limiting the ground deformation as well as the settlement of bridge foundation than a 2-Arch tunnel. It is also shown that the PIV analysis can be effectively used in analyzing ground tunneling induced ground movement for cases in which a construction sequence governs ground movement.

Assessment of over / under-break of tunnel utilizing BIM and 3D laser scanner (3차원 레이저 스캐너 및 BIM을 활용한 터널 과대.과소 굴착 평가)

  • Park, Jeong-Jun;Shin, Jae-Chou;Hwang, Ju-Hwan;Lee, Kang-Hyun;Seo, Hyung-Joon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.437-451
    • /
    • 2012
  • Application of 3D laser scanner to civil engineering is widely studied in various fields such as tunnel, bridge, calculation of earth volume, construction measurement, observation of rock joint, etc. Some studies on utilization of the 3D laser scanner for calculating the over-break and/or under-break of tunnels have also been carried out. However, in the previous research, the scanning data were usually compared with the 2D CAD blueprint results; although the shape of tunnel structure is relatively simple, for precise calculation of the over-break and/or under-break of tunnels, three-dimensional analysis based on BIM is needed. Therefore, in this paper, a new program that calculates the over-break and/or under-break of tunnels using the 3D laser scanner and the BIM is developed; moreover the effective and rapid process of data treatment is proposed. The accuracy of the developed program was verified by applying the new system to a real tunnels construction field.

An Experimental Research on the Shear Friction Behavior of Beam-Column Joints of Partial Precast Concrete Structures (부분PC 보-기둥 접합부의 전단 마찰 거동에 관한 실험 연구)

  • Kim, Sang-Yeon
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.91-97
    • /
    • 2014
  • An experimental program was initiated to investigate the structural capacity of PC (Precast Concrete) beam-column joints used for the underground parking structure. Static testing of 4 typical PC beam-column joints specimens was conducted. Specimens were designed to span a range of parameters typically encountered for such members, based on findings from the survey of existing PC joint details used in the construction fields in Korea. The specimens were four by their joint types and testing parameters. The specific structural behavior germane to each specimen, and general observations on overall member behavior as a function of the considered parameters, are reported. From the results of tests on four PC joints specimens, the beam-column joints of PC structure used for the underground parking building was found to have similar structural capacities when comparing to the cast-in-place concrete system.

Evaluation of the change in Geotechnical properties due to the Construction of Civil engineering Structure using HWAW Method (HWAW방법을 이용한 토목구조물 건설에 따른 하부 지반 물성 변화 평가)

  • Park, Hyung-Choon;Noh, Hee-Kwan;Park, Byeong-Cheol;Kim, Min-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.182-187
    • /
    • 2010
  • In the various fields of Civil Engineering, shear modulus is very important input parameters to design many constructions and to analyze ground behaviors. In general, a shear wave velocity profile is decided by various experiments before constructing a structure and, analysis and design are carried out by using decided shear wave velocity profile of the site. However, if civil structures are started to construct, the shear wave velocity will be increased more than before constructions because of confining pressure increase by the load of structure. The evaluation of the change in shear wave velocity profile is used very importantly when maintaining, managing, reinforcing and regenerating existing structures. In this study, a non-destructively geotechnical investigation method by using the HWAW method is applied to an evaluation of change in properties of the site according to construction. Generally, the space for experiments is narrow when underground of existing or on-going structures is evaluate, so a prompt non-destructive experiment is required. This prompt non-destructive experiment would be performed by various in-situ seismic methods. However, most of in-situ seismic methods need more space for experiments, so it is difficult to be applied. The HWAW method using the Harmonic wavelet transforms, which is based on time-frequency analysis, determines shear wave velocity profile. It consists of a source as well as short receiver spacing that is 1~3m, and is able to determine a shear wave velocity profile from surface to deep depth by one test on a space. As the HWAW method uses only the signal portion of the maximum local signal/noise ratio to determine a profile, it provides reliability shear modulus profile such as under construction or noisy situation by minimizing effects of noise from diverse vibration on a construction site or urban area. To estimate the applicability of the proposed method, field tests were performed in the change of geotechnical properties according to constructing a minimized modeling bent. Through this study, the change of geotechnical properties of the site was effectively evaluated according to construction of a structure.

  • PDF

An Experimental Study on the Reinforcement Effect of Installed Micropiles in the Surround of Footing on Dense Sand (조밀한 모래지반의 기초 인접에 설치된 마이크로파일 보강효과에 관한 실험적 연구)

  • Lee Tae-Hyung;Im Jong-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.69-81
    • /
    • 2006
  • The micropile, which is a kind of the in-situ manufactured pile with small diameter of $150\sim300mm$, is constructed by installing a steel bar or pipe and injecting grout into a borehole. The application fields of micropile are being gradually expanded in a limited space of down-town area, because the micropile has various advantages with low vibration and noise in method and compact size in machine, etc. Mostly, the micropile has been applied to secure the safety of structures, depending on the increment of bearing capacity and the restraint of displacement. The micropile is expected to be used in various fields due to its effectiveness and potentiality in the future. The model test, focused on the interaction between micropile and soil in this study, was carried out. The micropile is installed in a soil adjacent to footing (concept of 'soil reinforcement'). With the test results and soil deformation analysis, the reinforcement effect (relating to bearing capacity and settlement) was analysed in a qualitative and quantitative manner, respectively. Consequently, it is expected that we nay demonstrate the improvement of an efficiency and application in the design and construction of micropile.

Mix Design of Polymer Grouting Mortar for Prepacked Concrete Using Polymer Dispersions (폴리머 디스퍼션을 이용한 프리팩트 콘크리트용 주입 모르타르의 배합에 관한 연구)

  • Jo, Young-Kug;Kim, Wan-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.85-91
    • /
    • 2008
  • Prepacked concrete has recently been used in the special constructions fields such as underwater concrete work, heavy-weight concrete work, underground structure work, partial repair works for damaged reinforced concrete structures. and polymer-modified mortars have been employed as grouting mortars for the prepacked concrete. The purpose of this study is to recommend the optimum mix design of polymer-modified grouting mortars for prepacked concrete. Polymer-modified mortars using SBR and EVA emulsions as admixture of grouting mortars for prepacked concrete are prepared with various mix proportions such as sand-binder ratio, fly ash replacement ratio, polymer-binder ratio. and tested for flowability, viscosity of grouting mortars, bleeding ratio, expansion ratio, flexural and compressive strengths of grouting mortars and compressive and tensile strengths of prepacked concretes. From the test results, it is apparent that polymer-modified mortars can be produced as grouting mortars when proper mix design is chosen. We can design the mix proportions of high strength mortars for prepacked concrete according to the control of mix design factors such as type of polymer, polymer-binder ratio, sand-binder ratio and fly ash replacement ratio. Water-binder ratio of plain mortars for a constant flowability value are in the ranges of 43% to 50%. SBR-modified mortar has a little water-binder ratios compared to those of plain mortar, however, EVA-modified mortar needs a high water-binder ratio due to a high viscosity of polymer dispersion. The expansion and bleeding ratios of grouting mortars are also controlled in the proper value ranges. Polymer-modified grouting mortars have good flexural. compressive and tensile strengths, are not affected with various properties with increasing fly ash replacement to cement and binder-sand ratio. In this study, SBR-modified grouting mortar with a polymer-binder ratio of 10% or less, a fly ash replacement of 10% to cement and a sand-binder ratio of 1.5 is recommended as a grouting mortar for prepacked concrete.

Study on the Geological Characteristics and Slope Stability of Nammyeon reservoir in Bonghwa County, Kyungpook Province (경북 봉화군 남면저수지 일대의 지질특성 및 비탈면 안정성 검토)

  • Ihm, Myeong Hyeok;Park, Jin Young
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.77-88
    • /
    • 2017
  • The geology of the study area is composed mainly of conglomerate, sandstone, and shale and basalt. It is a rock that has been observed to move relatively recently through various brittle deformation and various stress fields during the recent period. To form a gentle terrain with severe crushing. The slope is located at the intersection of the Taegok Fault in the north-northeast direction and the Bukok Fault in the western north-west direction, and many faults, fault zones and fracture zones of various sizes are developed in the rock bed. In this study, the geological characteristics of the slope are investigated and the countermeasure method is suggested. It is suggested that periodical measurement and analysis should be performed by installing a measuring instrument according to each structure for safety management of the surrounding roads and grounds during construction or reinforcement by the countermeasure method for the slope of the study area.

Prediction of ground-condition ahead of tunnel face using electromagnetic wave - analytical study (전자기파를 이용한 터널전방 예측 -해석기법 중심으로)

  • Choi, Jun-Su;Cho, Gye-Chun;Lee, Geun-Ha;Yoon, Ji-Nam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.327-343
    • /
    • 2004
  • During tunnel construction, ground failures often occur due to existence of weak zones, such as faults, joints, and cavities, ahead of tunnel face. It is hard to detect effectively weak zones, which can lead underground structure to fail after excavation and before supporting, by using conventional characterization methods. In this study, an enhanced analytical method of predicting weak zones ahead of tunnel face is developed to overcome some problems in the conventional geophysical exploration methods. The analytical method is based on Coulomb's and Gauss' laws with considering the characteristics of electric fields subjected to rock mass. Using the developed method, closed form solutions are obtained to detect a spherical shaped zone and an oriented fault ahead of tunnel face respectively. The analytical results suggest that the presence of weak zones and their sizes, location, and states can be accurately predicted by combining a proper inversion process with resistance measured from several electrodes on the tunnel face. It appears that the skin depth or resistivity in rock mass is affected by the diameter of tunnel face, natural electric potential and noises induced by experimental measurement and spatial distribution of uncertain properties. The developed analytical solution is verified through experimental tests. About 1800 concrete blocks of 5cm by 5cm by 5cm in size are prepared and used to model a joint rock mass around tunnel face. Weak zones are simulated ahead of tunnel face with a material which has relatively higher conductivity than concrete blocks. Experimental results on the model test show a good agreement with analytical results.

  • PDF