• Title/Summary/Keyword: Construction drawing data

Search Result 151, Processing Time 0.026 seconds

The Study on Coordinate Transformation for Updating of Digital Map from Construction Drawing Data (건설도면 자료의 수치지도 갱신을 위한 좌표체계 부여에 관한 연구)

  • Park, Seung-Yong;Lee, Jae-Bin;Park, Woo-Jin;Yu, Ki-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.281-288
    • /
    • 2009
  • In the paper, we try to develop the methodology for updating road networks of large-scale digital maps by using construction drawing data. For the purpose, it is pre-requite step to merge road networks detached in CAD drawing data. As such, tie points are identified in neighboring drawings and used for solving the parameters of 2D conformal transformation between drawings. Then, the merged road network in CAD data is transformed to the coordinate system of digital maps. In the process, IPs in the drawings are considered as control information and 2D affine transformation is selected for coordinate transformation. Through the experiments with real dataset, we can identify that the developed method is valid and generally applicable.

Application of BIM on Drawing Verification of Firefighting

  • Chang, Ya-Chun;Shr, Jin-Fang;Huang, Xuan-Chao
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.15-18
    • /
    • 2015
  • In general, most of the function and using of building is for single purpose. However, current buildings combine several functions that causes a lot of problems not on firefighting only but also on environment engineering. Because of hard integration on different fields that causes a lot of conflict. That wastes cost and time. That also threaten the safety of firefighting. This search focuses on the drawing verification and field inspection on firefighting. These two items both remain paper work. To complete the current work, it needs to bring a great amount of drawing papers in the field. By BIM, integrated data can be extracted. It makes the drawing verification and field inspection easier and increases the efficiency. That is the main point of this research.

Development of Drawing Processing Tool Program and Establishment Strategy of 3D Underground Structures based on Standardized Drawings (표준도 기반의 3차원 지하구조물 구축 방안 및 도면가공 툴 프로그램 개발)

  • LEE, Min-Kyu;HAN, Sang-Hoon;KIM, Sung-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.1-25
    • /
    • 2021
  • In order to respond and prevent underground safety accidents, the Korean government has been preparing a submitting completion drawing web system project for converting the current manual-based 3D Underground Geospatial Map construction and its update system to an automation-based 3D underground information construction. However, research on standard drawings required for the automatic update of 3D underground structures is insufficient, so detailed research is needed. In this research paper, a standard map-based 3D underground structure construction plan was presented for the six types of underground structures constituting the 3D Underground Geospatial Map, enabling rapid and accurate drawing data creation and systematically 3D underground structure drawing data could be managed. In addition, we developed a 3D construction drawing tool that can be used in underground information practice so that ordinary CAD program users can easily produce processing drawings. The results derived from this paper are expected to be major reference materials for the establishment of standard frameworks and practical application guidelines for the construction of 3D underground structures in the future.

A Study on 4D CAD and GIS Integrated System for Process Risk Management Model (4D CAD와 GIS의 통합시스템을 통한 프로젝트 단계별 리스크관리 모델에 관한 연구)

  • Jeon, Seung-Ho;Yun, Seok-Heon;Paek, Joon-Hong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.3
    • /
    • pp.91-98
    • /
    • 2007
  • Recently a construction industry introduces information that brings about many advantages in the early planning phase, design phase and construction phase. Especially it replaces 2D, 3D systems(usually using explanation of drawing information) ai 4D CAD(offering a sort of 4D-having relation of construction schedule and 3D drawing information). Nevertheless a 4D has these benefits, it has limits which are not only usually using 3D modeling but also limit of making full use of practical affairs because of a lack of connecting varietals of progress of work. To solve these uppermost limits, this research is presenting unified systems to use in risk management which are efficient management of space and non-space information, space analysis, making full use of data base, introducing GIS system of easy interaction.

A study on building outline simplifications considering digital map generalizations (수치지도 작성을 위한 건물외곽선 단순화기법 연구)

  • Park, Woo-Jin;Park, Seung-Yong;Jo, Seong-Hwan;Yu, Ki-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.657-666
    • /
    • 2009
  • In GIS area, many line simplification algorithms are studied among generalization methods used for making the building data in the form of digital map from the original line data. On the other hand, there are few studies on the simplification algorithm considering the drawing rules of the digital map in Korea. In this paper, the line simplification algorithm based on the drawing rules is proposed as the methodology to create or update the building data of digital map by extracting the building outline from the CAD data used in construction. To confirm the usefulness of the algorithm, this algorithm and four other effective and general line simplification algorithms (e.g., Douglas-Peucker algorithm) are applied to the same building outlines. Then, the five algorithms are compared on five criteria, the satisfaction degree of the drawing rules, shape similarity, the change rate of the number of points, total length of lines, and the area of polygon. As a result, the proposed algorithm shows the 100% of satisfaction degree to the drawing rules. Also, there is little loss in four other mentioned criteria. Thus, the proposed algorithm in this paper is judged to be effective in updating the building data in digital map with construction drawings.

Evaluation of Horizontal Position Accuracy in Forest Road Completion Drawing (임도 준공도면의 수평위치 정확도 평가에 관한 연구)

  • Kim, Myeong-Jun;Kweon, Hyeong-Keun;Choi, Yeon-Ho;Yeom, In-Hwan;Lee, Joon-Woo
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.471-479
    • /
    • 2010
  • Forest roads of 16,424km have been constructed as infrastructure for efficient management of forest. The demand of forest road have been also increased steadily with SOC conception for forest management and wood production. But, accuracy verification by completion drawing of forest road needed aspects extration of geographic information to sound like forest road construction and completion drawing. However, verification for completion drawing has not ascertained. This study carried out the evaluation for position accuracy about constructed forest road in Chungcheongnam-do for evaluating horizontal position accuracy of completion drawing of forest road. In result, first of distance of completion drawing and real route designed completion drawing longer than the real route as Gongju 83m, Seosan 66m, Nonsan 27m and Dangjin 19m, respectively. Second, RMSE by point-correspondence was 11m~14.7m, buffering analysis appeared difference of 18~24m. Finally, index of shape was the similar completion and real route through 6.5~7.4 and data information of forest road corresponds to be perfect. For such reasons, the existing completion drawings have a problem that it cannot use graphic information for drawing digital map according to the regulation, and there is an urgent need for improvement to solve this problem in the process of design and construction.

Accuracy Analysis of Point Cloud Data Produced Via Mobile Mapping System LiDAR in Construction Site (건설현장 MMS 라이다 기반 점군 데이터의 정확도 분석)

  • Park, Jae-Woo;Yeom, Dong-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.397-406
    • /
    • 2022
  • Recently, research and development to revitalize smart construction are being actively carried out. Accordingly, 3D mapping technology that digitizes construction site is drawing attention. To create a 3D digital map for construction site a point cloud generation method based on LiDAR(Light detection and ranging) using MMS(Mobile mapping system) is mainly used. The purpose of this study is to analyze the accuracy of MMS LiDAR-based point cloud data. As a result, accuracy of MMS point cloud data was analyzed as dx = 0.048m, dy = 0.018m, dz = 0.045m on average. In future studies, accuracy comparison of point cloud data produced via UAV(Unmanned aerial vegicle) photogrammetry and MMS LiDAR should be studied.

A preliminary study of the construction project productivity data platform development (건설 프로젝트 생산성 정보 플랫폼 구축방안 기초연구)

  • Kang, Goune;Lee, Gyu;Lee, Kyo-sun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.296-297
    • /
    • 2018
  • Due to the decrease in infrastructure investment and stagnation of overseas construction, it is concerned the instability of the construction market. Enhancing the Korean construction competitiveness, productivity improvement could be the breakthrough. In addition, defining construction contents utilizing virtual reality technology is drawing attention along with the trend of the fourth industrial revolution technology development toward the labor productivity improvement. This study conducted a survey to figure out the present state of the productivity management in field and comprehend the factors influence on construction productivity for further Korean construction productivity data platform.

  • PDF

Rebar Spacing Fixing Technology using Laser Scanning and HoloLens

  • Lee, Yeongjoo;Kim, Jeongseop;Lee, Jin Gang;Kim, Minkoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.2
    • /
    • pp.69-80
    • /
    • 2024
  • Currently rebar spacing inspection is carried out by human inspectors who heavily rely on their individual experience, lacking a guarantee of objectivity and accuracy in the inspection process. In addition, if incorrectly placed rebars are identified, the inspector need to correct them. Recently, laser scanning and AR technologies have been widely used because of their merits of measurement accuracy and visualization. This study proposes a technology for rebar spacing inspection and fixing by combining laser scanning and AR technology. First, scan data acquisition of rebar layers is performed and the raw scan data is processed. Second, AR-based visualization and fixing are performed by comparing the design model with the model generated from the scan data. To verify the developed technique, performance comparison test is conducted by comparing with existing drawing-based method in terms of inspection time, error detection rate, cognitive load, and situational awareness ability. It is found from the result of the experiment that the AR-based rebar inspection and fixing technology is faster than the drawing-based method, but there was no significant difference between the two groups in error identification rate, cognitive load, and situational awareness ability. Based on the experimental results, the proposed AR-based rebar spacing inspection and fixing technology is expected to be highly useful throughout the construction industry.

A Study on the Development of a Product Model-based Information Framework for AEC Products (AEC 시설물의 프로덕트 모델기반 정보공유 기술 개발에 관한 연구)

  • Kang, B.C.;Choi, S.R.;Kim, I.H.;Kim, H.D.;Kim, M.H.;Won, J.S.;Kwon, J.M.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.4
    • /
    • pp.256-264
    • /
    • 2006
  • Currently, it is necessary to share and exchange drawing information between 2D and 3D data in AEC(Architecture, Engineering & Construction) fields. The authors suggest an information model framework to express IFC(Industry Foundation Classes)-based drawing of 3D AEC products as 2D drawing. In this study, 1) an information framework has been developed to enable sharing and exchange of AEC product model by adding various information factors, 2) standardized APIs and an IFC2DBrowser are developed.